* v2.1.0.2 * restore tweaks to simlibp2p * fix: nil ref on size calc * fix: panic should induce shutdown from event_distributor * fix: friendlier initialization that requires less manual kickstarting for test/devnets * fix: fewer available shards than provers should choose shard length * fix: update stored worker registry, improve logging for debug mode * fix: shut the fuck up, peer log * qol: log value should be snake cased * fix:non-archive snap sync issues * fix: separate X448/Decaf448 signed keys, add onion key to registry * fix: overflow arithmetic on frame number comparison * fix: worker registration should be idempotent if inputs are same, otherwise permit updated records * fix: remove global prover state from size calculation * fix: divide by zero case * fix: eager prover * fix: broadcast listener default * qol: diagnostic data for peer authenticator * fix: master/worker connectivity issue in sparse networks tight coupling of peer and workers can sometimes interfere if mesh is sparse, so give workers a pseudoidentity but publish messages with the proper peer key * fix: reorder steps of join creation * fix: join verify frame source + ensure domain is properly padded (unnecessary but good for consistency) * fix: add delegate to protobuf <-> reified join conversion * fix: preempt prover from planning with no workers * fix: use the unallocated workers to generate a proof * qol: underflow causes join fail in first ten frames on test/devnets * qol: small logging tweaks for easier log correlation in debug mode * qol: use fisher-yates shuffle to ensure prover allocations are evenly distributed when scores are equal * qol: separate decisional logic on post-enrollment confirmation into consensus engine, proposer, and worker manager where relevant, refactor out scoring * reuse shard descriptors for both join planning and confirm/reject decisions * fix: add missing interface method and amend test blossomsub to use new peer id basis * fix: only check allocations if they exist * fix: pomw mint proof data needs to be hierarchically under global intrinsic domain * staging temporary state under diagnostics * fix: first phase of distributed lock refactoring * fix: compute intrinsic locking * fix: hypergraph intrinsic locking * fix: token intrinsic locking * fix: update execution engines to support new locking model * fix: adjust tests with new execution shape * fix: weave in lock/unlock semantics to liveness provider * fix lock fallthrough, add missing allocation update * qol: additional logging for diagnostics, also testnet/devnet handling for confirmations * fix: establish grace period on halt scenario to permit recovery * fix: support test/devnet defaults for coverage scenarios * fix: nil ref on consensus halts for non-archive nodes * fix: remove unnecessary prefix from prover ref * add test coverage for fork choice behaviors and replay – once passing, blocker (2) is resolved * fix: no fork replay on repeat for non-archive nodes, snap now behaves correctly * rollup of pre-liveness check lock interactions * ahead of tests, get the protobuf/metrics-related changes out so teams can prepare * add test coverage for distributed lock behaviors – once passing, blocker (3) is resolved * fix: blocker (3) * Dev docs improvements (#445) * Make install deps script more robust * Improve testing instructions * Worker node should stop upon OS SIGINT/SIGTERM signal (#447) * move pebble close to Stop() * move deferred Stop() to Start() * add core id to worker stop log message * create done os signal channel and stop worker upon message to it --------- Co-authored-by: Cassandra Heart <7929478+CassOnMars@users.noreply.github.com> --------- Co-authored-by: Daz <daz_the_corgi@proton.me> Co-authored-by: Black Swan <3999712+blacks1ne@users.noreply.github.com> |
||
|---|---|---|
| .. | ||
| bench | ||
| src | ||
| build.rs | ||
| Cargo.toml | ||
| README.md | ||
Verifiable Delay Function (VDF) Implementation in Rust
What is a VDF?
A Verifiable Delay Function (VDF) is a function that requires substantial time to evaluate (even with a polynomial number of parallel processors) but can be very quickly verified as correct. VDFs can be used to construct randomness beacons with multiple applications in a distributed network environment. By introducing a time delay during evaluation, VDFs prevent malicious actors from influencing output. The output cannot be differentiated from a random number until the final result is computed. See https://eprint.iacr.org/2018/712.pdf for more details.
Description
This VDF implementation is written in Rust. The GMP library is used for arithmetic and greatest common divisor (GCD) calculations. We use class groups to implement the approaches described in the following papers:
- Simple Verifiable Delay Functions. Pietrzak, 2018
- Efficient Verifiable Delay Functions. Wesolowski, 2018
The chosen generator is (2, 1, c), where c is calculated from the provided discriminant. A form is represented internally (a, b, c), with the discriminant not being used in most omputations. This implementation performs reduction is performed after every multiplication and squaring, as not doing so did not give any gains in our benchmarks.
This repo includes three crates:
classgroup: a class group implementation, as well as a trait for class groups.vdf: a Verifyable Delay Function (VDF) trait, as well as an implementation of that trait.vdf-cli: a command-line interface to the vdf crate. It also includes additional commands, which are deprecated and will be replaced by a CLI to the classgroup crate.
Usage
-
Install Rust. We (POA Networks) have tested the code with the latest stable, beta, and nightly versions of Rust. It may work with older versions, but this is not guaranteed.
-
Install the GNU Multiple Precision Library
- On Debian and derivatives (including Ubuntu):
$ sudo apt-get install -y libgmp-dev - On Red Hat and derivatives (Fedora, CentOS)
$ sudo dnf -y install gmp-devel
- On Debian and derivatives (including Ubuntu):
-
Download and prepare the repository
$ git clone https://github.com/poanetwork/vdf.git $ cargo install --path=vdf-cli $ # or for the competition binary $ cargo install --path=vdf-competition
Command Line Interface
To initiate, use the vdf-cli command followed by 2 arguments:
- challenge: byte string of arbitrary length
- difficulty: number of iterations, each iteration requires more time to evaluate
This generates the Weslowski proof of time. To generate the Pietrzak proof of
time, pass -tpietrzak. For detailed usage information, run vdf-cli --help.
Once complete you will see the output, returned as a Vec<u8>. The CLI tool
hex-encodes its output.
Example
$ vdf-cli aa 100
005271e8f9ab2eb8a2906e851dfcb5542e4173f016b85e29d481a108dc82ed3b3f97937b7aa824801138d1771dea8dae2f6397e76a80613afda30f2c30a34b040baaafe76d5707d68689193e5d211833b372a6a4591abb88e2e7f2f5a5ec818b5707b86b8b2c495ca1581c179168509e3593f9a16879620a4dc4e907df452e8dd0ffc4f199825f54ec70472cc061f22eb54c48d6aa5af3ea375a392ac77294e2d955dde1d102ae2ace494293492d31cff21944a8bcb4608993065c9a00292e8d3f4604e7465b4eeefb494f5bea102db343bb61c5a15c7bdf288206885c130fa1f2d86bf5e4634fdc4216bc16ef7dac970b0ee46d69416f9a9acee651d158ac64915b
To verify, use the vdi-cli command with the same arguments and include the
output.
Example
$ vdf-cli aa 100 005271e8f9ab2eb8a2906e851dfcb5542e4173f016b85e29d481a108dc82ed3b3f97937b7aa824801138d1771dea8dae2f6397e76a80613afda30f2c30a34b040baaafe76d5707d68689193e5d211833b372a6a4591abb88e2e7f2f5a5ec818b5707b86b8b2c495ca1581c179168509e3593f9a16879620a4dc4e907df452e8dd0ffc4f199825f54ec70472cc061f22eb54c48d6aa5af3ea375a392ac77294e2d955dde1d102ae2ace494293492d31cff21944a8bcb4608993065c9a00292e8d3f4604e7465b4eeefb494f5bea102db343bb61c5a15c7bdf288206885c130fa1f2d86bf5e4634fdc4216bc16ef7dac970b0ee46d69416f9a9acee651d158ac64915b
Proof is valid
VDF Library
extern crate vdf;
use vdf::{InvalidProof, PietrzakVDFParams, VDFParams, WesolowskiVDFParams, VDF};
/// The correct solution.
const CORRECT_SOLUTION: &[u8] =
b"\x00\x52\x71\xe8\xf9\xab\x2e\xb8\xa2\x90\x6e\x85\x1d\xfc\xb5\x54\x2e\x41\x73\xf0\x16\
\xb8\x5e\x29\xd4\x81\xa1\x08\xdc\x82\xed\x3b\x3f\x97\x93\x7b\x7a\xa8\x24\x80\x11\x38\
\xd1\x77\x1d\xea\x8d\xae\x2f\x63\x97\xe7\x6a\x80\x61\x3a\xfd\xa3\x0f\x2c\x30\xa3\x4b\
\x04\x0b\xaa\xaf\xe7\x6d\x57\x07\xd6\x86\x89\x19\x3e\x5d\x21\x18\x33\xb3\x72\xa6\xa4\
\x59\x1a\xbb\x88\xe2\xe7\xf2\xf5\xa5\xec\x81\x8b\x57\x07\xb8\x6b\x8b\x2c\x49\x5c\xa1\
\x58\x1c\x17\x91\x68\x50\x9e\x35\x93\xf9\xa1\x68\x79\x62\x0a\x4d\xc4\xe9\x07\xdf\x45\
\x2e\x8d\xd0\xff\xc4\xf1\x99\x82\x5f\x54\xec\x70\x47\x2c\xc0\x61\xf2\x2e\xb5\x4c\x48\
\xd6\xaa\x5a\xf3\xea\x37\x5a\x39\x2a\xc7\x72\x94\xe2\xd9\x55\xdd\xe1\xd1\x02\xae\x2a\
\xce\x49\x42\x93\x49\x2d\x31\xcf\xf2\x19\x44\xa8\xbc\xb4\x60\x89\x93\x06\x5c\x9a\x00\
\x29\x2e\x8d\x3f\x46\x04\xe7\x46\x5b\x4e\xee\xfb\x49\x4f\x5b\xea\x10\x2d\xb3\x43\xbb\
\x61\xc5\xa1\x5c\x7b\xdf\x28\x82\x06\x88\x5c\x13\x0f\xa1\xf2\xd8\x6b\xf5\xe4\x63\x4f\
\xdc\x42\x16\xbc\x16\xef\x7d\xac\x97\x0b\x0e\xe4\x6d\x69\x41\x6f\x9a\x9a\xce\xe6\x51\
\xd1\x58\xac\x64\x91\x5b";
fn main() {
// The length of the prime numbers generated, in bits.
let num_bits: u16 = 2048;
// An instance of the VDF. Instances can be used arbitrarily many times.
let pietrzak_vdf = PietrzakVDFParams(num_bits).new();
// Solve for the correct answer. This will take a minute or two.
assert_eq!(
&pietrzak_vdf.solve(b"\xaa", 10000).unwrap()[..],
CORRECT_SOLUTION
);
// Verify the answer. This should be far faster (less than a second).
assert!(pietrzak_vdf.verify(b"\xaa", 10000, CORRECT_SOLUTION).is_ok());
}
Benchmarks
Benchmarks are provided for the classgroup operations. To run benchmarks:
$ ./bench.sh <your challenge here>
Additional benchmarks are under development.
Current Benchmarks
These were generated by ./bench.sh aadf. Outliers could be due to preemption
by the OS and/or hypervisor. Changes are relative to the previous test run
done on the same machine. Since the previous run was done with different
settings and/or code than reported here, these changes are not meaningful.
Benchmarking square with seed aadf: 512: Collecting 100 samples in estimated 5.0439 s (374k iteratio square with seed aadf: 512
time: [13.301 us 13.333 us 13.372 us]
change: [-22.286% -21.745% -21.225%] (p = 0.00 < 0.05)
Performance has improved.
Found 22 outliers among 100 measurements (22.00%)
5 (5.00%) high mild
17 (17.00%) high severe
Benchmarking multiply with seed aadf: 512: Collecting 100 samples in estimated 5.0452 s (293k iterat multiply with seed aadf: 512
time: [17.219 us 17.251 us 17.287 us]
change: [-24.323% -23.739% -23.149%] (p = 0.00 < 0.05)
Performance has improved.
Found 10 outliers among 100 measurements (10.00%)
4 (4.00%) high mild
6 (6.00%) high severe
Benchmarking square with seed aadf: 1024: Collecting 100 samples in estimated 5.0822 s (177k iterati square with seed aadf: 1024
time: [28.672 us 28.716 us 28.767 us]
change: [-29.947% -29.339% -28.708%] (p = 0.00 < 0.05)
Performance has improved.
Found 8 outliers among 100 measurements (8.00%)
1 (1.00%) low mild
1 (1.00%) high mild
6 (6.00%) high severe
Benchmarking multiply with seed aadf: 1024: Collecting 100 samples in estimated 5.0886 s (136k itera multiply with seed aadf: 1024
time: [37.163 us 37.207 us 37.254 us]
change: [-21.403% -20.750% -20.170%] (p = 0.00 < 0.05)
Performance has improved.
Found 8 outliers among 100 measurements (8.00%)
1 (1.00%) low mild
1 (1.00%) high mild
6 (6.00%) high severe
Benchmarking square with seed aadf: 2048: Collecting 100 samples in estimated 5.2519 s (76k iteratio square with seed aadf: 2048
time: [69.115 us 69.254 us 69.430 us]
change: [-28.091% -27.738% -27.341%] (p = 0.00 < 0.05)
Performance has improved.
Found 8 outliers among 100 measurements (8.00%)
1 (1.00%) low mild
1 (1.00%) high mild
6 (6.00%) high severe
Benchmarking multiply with seed aadf: 2048: Collecting 100 samples in estimated 5.0554 s (56k iterat multiply with seed aadf: 2048
time: [90.922 us 91.057 us 91.201 us]
change: [-25.236% -24.794% -24.336%] (p = 0.00 < 0.05)
Performance has improved.
Found 13 outliers among 100 measurements (13.00%)
2 (2.00%) low mild
5 (5.00%) high mild
6 (6.00%) high severe
License
Copyright 2018 Chia Network Inc and POA Networks Ltd.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.