ceremonyclient/types/hypergraph/hypergraph.go
Cassandra Heart 6686cebcd1
v2.1.0.17
2025-12-19 12:20:56 -06:00

328 lines
10 KiB
Go
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

package hypergraph
import (
"math/big"
"github.com/pkg/errors"
"source.quilibrium.com/quilibrium/monorepo/protobufs"
"source.quilibrium.com/quilibrium/monorepo/types/crypto"
"source.quilibrium.com/quilibrium/monorepo/types/tries"
)
type AtomType string
type PhaseType string
const (
VertexAtomType AtomType = "vertex"
HyperedgeAtomType AtomType = "hyperedge"
AddsPhaseType PhaseType = "adds"
RemovesPhaseType PhaseType = "removes"
)
type Extrinsic struct {
Ref [64]byte
}
type Location [64]byte // 32 bytes for AppAddress + 32 bytes for DataAddress
type ShardMetadata struct {
Commitment []byte
LeafCount uint64
Size uint64
}
var ErrInvalidAtomType = errors.New("invalid atom type for set")
var ErrInvalidLocation = errors.New("invalid location")
var ErrRemoved = errors.New("removed")
// HyperStream defines the synchronization stream interface shared by a syncing
// client and server instance.
type HyperStream interface {
Send(*protobufs.HypergraphComparison) error
Recv() (*protobufs.HypergraphComparison, error)
}
// Hypergraph defines the interface for hypergraph operations. A hypergraph is a
// higher-dimensional generalization of a graph where edges (hyperedges) can
// connect any number of vertices or hyperedges themselves.
type Hypergraph interface {
// GetSize returns the current total size of the hypergraph or at a key. The
// size is calculated as the sum of all added atoms' sizes minus removed
// atoms.
GetSize(shardKey *tries.ShardKey, path []int) *big.Int
// Commit calculates the hierarchical vector commitments for each shard's
// add/remove sets and returns the roots. Utilizes the frameNumber for
// historical caching.
Commit(frameNumber uint64) (map[tries.ShardKey][][]byte, error)
// CommitShard calculates the hierarchical vector commitments for each shard
// address' add/remove sets and returns the commitments at the tree level of
// the address. Utilizes the frameNumber for historical caching.
CommitShard(frameNumber uint64, shardAddress []byte) ([][]byte, error)
// GetShardCommits returns the hierarchical vector commitments for the
// specific shard address at the given frameNumber. If this is not already
// stored, returns an error.
GetShardCommits(frameNumber uint64, shardAddress []byte) ([][]byte, error)
// SetCoveredPrefix sets a prefix where inserted values are retained. Values
// outside of this will be rejected synchronization will only set neighbor
// and ascendant branches.
SetCoveredPrefix(prefix []int) error
// GetCoveredPrefix retrieves the covered prefix value.
GetCoveredPrefix() ([]int, error)
// GetMetadataAtKey is a fast path to retrieve metadata information used for
// consensus, avoiding unnecessary recomputation for lookups.
GetMetadataAtKey(pathKey []byte) ([]ShardMetadata, error)
// Vertex operations
// GetVertex retrieves a vertex by its ID. Returns ErrRemoved if the vertex
// has been removed, or an error if the vertex doesn't exist.
GetVertex(id [64]byte) (Vertex, error)
// AddVertex adds a new vertex to the hypergraph within the given transaction.
// The vertex will be added to the appropriate shard based on its address.
AddVertex(txn tries.TreeBackingStoreTransaction, v Vertex) error
// RemoveVertex marks a vertex as removed.
RemoveVertex(txn tries.TreeBackingStoreTransaction, v Vertex) error
// RevertAddVertex undoes a previous AddVertex operation. This is useful for
// rolling back series of operations in the event of a frame rewind.
RevertAddVertex(
txn tries.TreeBackingStoreTransaction,
v Vertex,
) error
// RevertRemoveVertex undoes a previous RemoveVertex operation.
RevertRemoveVertex(
txn tries.TreeBackingStoreTransaction,
v Vertex,
) error
// LookupVertex checks if a vertex exists and hasn't been removed. Returns
// true if the vertex is present and active.
LookupVertex(v Vertex) bool
// Hyperedge operations
// GetHyperedge retrieves a hyperedge by its ID. Returns ErrRemoved if the
// hyperedge has been removed, or an error if it doesn't exist.
GetHyperedge(id [64]byte) (Hyperedge, error)
// AddHyperedge adds a new hyperedge to the hypergraph. The hyperedge will be
// added to the appropriate shard based on its address.
AddHyperedge(
txn tries.TreeBackingStoreTransaction,
h Hyperedge,
) error
// RemoveHyperedge marks a hyperedge as removed.
RemoveHyperedge(
txn tries.TreeBackingStoreTransaction,
h Hyperedge,
) error
// RevertAddHyperedge undoes a previous AddHyperedge operation.
RevertAddHyperedge(
txn tries.TreeBackingStoreTransaction,
h Hyperedge,
) error
// RevertRemoveHyperedge undoes a previous RemoveHyperedge operation.
RevertRemoveHyperedge(
txn tries.TreeBackingStoreTransaction,
h Hyperedge,
) error
// LookupHyperedge checks if a hyperedge exists and hasn't been removed.
// Returns true if the hyperedge is present and active.
LookupHyperedge(h Hyperedge) bool
// Atom operations
// LookupAtom checks if any atom (vertex or hyperedge) exists and hasn't been
// removed.
LookupAtom(a Atom) bool
// LookupAtomSet checks if all atoms in the set exist and haven't been
// removed. Returns true only if all atoms are present and active.
LookupAtomSet(atomSet []Atom) bool
// Within checks if atom 'a' is within hyperedge 'h'. This includes direct
// containment and recursive containment through nested hyperedges.
Within(a, h Atom) bool
// GetVertexDataIterator exposes an iterator to enumerate all data objects
// stored under the given domain
GetVertexDataIterator(domain [32]byte) tries.VertexDataIterator
// Import operations
// ImportTree imports a pre-existing tree into the hypergraph. This is invoked
// by the persistence layer to load tree roots for each set into the
// hypergraph instance.
ImportTree(
atomType AtomType,
phaseType PhaseType,
shardKey tries.ShardKey,
root tries.LazyVectorCommitmentNode,
store tries.TreeBackingStore,
prover crypto.InclusionProver,
) error
// Vertex data operations
// GetVertexData retrieves the data tree associated with a vertex.
GetVertexData(id [64]byte) (*tries.VectorCommitmentTree, error)
// SetVertexData associates a data tree with a vertex.
SetVertexData(
txn tries.TreeBackingStoreTransaction,
id [64]byte,
data *tries.VectorCommitmentTree,
) error
// RunDataPruning executes the deletion of changesets prior to the given
// frame number. This should be called periodically to save room.
RunDataPruning(
txn tries.TreeBackingStoreTransaction,
frameNumber uint64,
) error
// Hard delete operations - these bypass CRDT semantics for pruning
// DeleteVertexAdd performs a hard delete of a vertex from the VertexAdds
// set. Unlike RemoveVertex (which adds to VertexRemoves for CRDT semantics),
// this actually removes the entry from VertexAdds and deletes the associated
// vertex data. This is used for pruning stale/orphaned data.
DeleteVertexAdd(
txn tries.TreeBackingStoreTransaction,
shardKey tries.ShardKey,
vertexID [64]byte,
) error
// DeleteVertexRemove performs a hard delete of a vertex from the
// VertexRemoves set. This is used for pruning stale data.
DeleteVertexRemove(
txn tries.TreeBackingStoreTransaction,
shardKey tries.ShardKey,
vertexID [64]byte,
) error
// DeleteHyperedgeAdd performs a hard delete of a hyperedge from the
// HyperedgeAdds set. This is used for pruning stale/orphaned data.
DeleteHyperedgeAdd(
txn tries.TreeBackingStoreTransaction,
shardKey tries.ShardKey,
hyperedgeID [64]byte,
) error
// DeleteHyperedgeRemove performs a hard delete of a hyperedge from the
// HyperedgeRemoves set. This is used for pruning stale data.
DeleteHyperedgeRemove(
txn tries.TreeBackingStoreTransaction,
shardKey tries.ShardKey,
hyperedgeID [64]byte,
) error
// Hyperedge data operations
// GetHyperedgeExtrinsics retrieves the extrinsic tree of a hyperedge, which
// contains all atoms connected by the hyperedge. When the atom is a vertex,
// GetVertexData will still need to be called to retrieve the underlying data.
GetHyperedgeExtrinsics(id [64]byte) (*tries.VectorCommitmentTree, error)
// Proof operations
// CreateTraversalProof generates a verkle multiproof for the specified keys
// within the given domain's atom set, contains traversal elements required to
// verify the proof.
CreateTraversalProof(
domain [32]byte,
atomType AtomType,
phaseType PhaseType,
keys [][]byte,
) (*tries.TraversalProof, error)
// VerifyTraversalProof validates a set of verkle multiproofs against the
// current state of the hypergraph.
VerifyTraversalProof(
domain [32]byte,
atomType AtomType,
phaseType PhaseType,
root []byte,
traversalProof *tries.TraversalProof,
) (bool, error)
// Reversion-oriented methods
// TrackChange tracks a previous state for data for reversion purposes.
TrackChange(
txn tries.TreeBackingStoreTransaction,
key []byte,
oldValue *tries.VectorCommitmentTree,
frameNumber uint64,
phaseType string,
setType string,
shardKey tries.ShardKey,
) error
// GetChanges returns the set of previous states in reverse chronological
// order.
GetChanges(
frameStart uint64,
frameEnd uint64,
phaseType string,
setType string,
shardKey tries.ShardKey,
) ([]*tries.ChangeRecord, error)
// RevertChanges reverts the set of changes in reverse chronological order.
RevertChanges(
txn tries.TreeBackingStoreTransaction,
frameStart uint64,
frameEnd uint64,
shardKey tries.ShardKey,
) error
// Synchronization operations
// Embeds the comparison service
protobufs.HypergraphComparisonServiceServer
// Sync is the client-side initiator for synchronization.
Sync(
stream protobufs.HypergraphComparisonService_HyperStreamClient,
shardKey tries.ShardKey,
phaseSet protobufs.HypergraphPhaseSet,
) error
// Transaction and utility operations
// NewTransaction creates a new transaction for batch operations.
NewTransaction(indexed bool) (
tries.TreeBackingStoreTransaction,
error,
)
// GetProver returns the inclusion prover used for cryptographic operations.
GetProver() crypto.InclusionProver
}
// Encrypted represents an encrypted data element that can be verified.
type Encrypted interface {
// ToBytes serializes the encrypted data to bytes.
ToBytes() []byte
// GetStatement returns the statement being encrypted.
GetStatement() []byte
// Verify validates the proof for this encrypted data.
Verify(proof []byte) bool
}