ceremonyclient/hypergraph/id_set.go
Cassandra Heart f5216924c0
v2.1.0.15
2025-12-09 16:30:43 -06:00

348 lines
8.8 KiB
Go
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

package hypergraph
import (
"math/big"
"slices"
"source.quilibrium.com/quilibrium/monorepo/types/crypto"
"source.quilibrium.com/quilibrium/monorepo/types/hypergraph"
"source.quilibrium.com/quilibrium/monorepo/types/tries"
)
// IdSet represents a set of atom IDs with their associated atoms.
// It uses a lazy vector commitment tree for efficient storage and proofs.
type idSet struct {
dirty bool
atomType hypergraph.AtomType
tree *tries.LazyVectorCommitmentTree
validator hypergraph.TreeValidator
}
// NewIdSet creates a new phase set for the specified atom and phase types.
// IdSets are CRDTs combining two of them for add and remove phases creates a
// standard 2P set. These are combined for a 2P2P-Hypergraph CRDT.
func NewIdSet(
atomType hypergraph.AtomType,
phaseType hypergraph.PhaseType,
shardKey tries.ShardKey,
store tries.TreeBackingStore,
prover crypto.InclusionProver,
root tries.LazyVectorCommitmentNode,
coveredPrefix []int,
) *idSet {
return &idSet{
dirty: false,
atomType: atomType,
tree: &tries.LazyVectorCommitmentTree{
SetType: string(atomType),
PhaseType: string(phaseType),
ShardKey: shardKey,
Store: store,
InclusionProver: prover,
Root: root,
CoveredPrefix: coveredPrefix,
},
}
}
// AttachValidator attaches a validation function to this ID set. The validator
// will be called when validating trees during sync operations.
func (set *idSet) AttachValidator(validator hypergraph.TreeValidator) {
set.validator = validator
}
// GetTree returns the underlying tree. Be cautious when using this.
func (set *idSet) GetTree() *tries.LazyVectorCommitmentTree {
return set.tree
}
// ValidateTree validates a vector commitment tree using the attached validator.
// If no validator is attached, returns nil. This is used to validate data
// trees associated with atoms in the set.
func (set *idSet) ValidateTree(
key, value []byte,
tree *tries.VectorCommitmentTree,
) error {
if set.validator != nil {
return set.validator(key, value, tree)
} else {
return nil
}
}
// IsDirty returns true if the set has been modified since last commit. A dirty
// set indicates uncommitted changes that need to be persisted.
func (set *idSet) IsDirty() bool {
return set.dirty
}
// Add inserts an atom into the ID set. The atom must match the set's atom type
// or ErrInvalidAtomType is returned. The atom is added to both the in-memory
// map and the backing tree store.
func (set *idSet) Add(
txn tries.TreeBackingStoreTransaction,
atom hypergraph.Atom,
) error {
if atom.GetAtomType() != set.atomType {
return hypergraph.ErrInvalidAtomType
}
id := atom.GetID()
set.dirty = true
return set.tree.Insert(
txn,
id[:],
atom.ToBytes(),
atom.Commit(set.tree.InclusionProver),
atom.GetSize(),
)
}
// AddRaw inserts raw leaf data directly into the backing store without tree
// traversal. This is used for raw sync operations where data is pre-serialized.
func (set *idSet) AddRaw(
txn tries.TreeBackingStoreTransaction,
leaf *tries.RawLeafData,
) error {
set.dirty = true
return set.tree.Store.InsertRawLeaf(
txn,
set.tree.SetType,
set.tree.PhaseType,
set.tree.ShardKey,
leaf,
)
}
// Delete removes an atom from the ID set. The atom must match the set's atom
// type or ErrInvalidAtomType is returned. The atom is removed from the backing
// tree store.
func (set *idSet) Delete(
txn tries.TreeBackingStoreTransaction,
atom hypergraph.Atom,
) error {
if atom.GetAtomType() != set.atomType {
return hypergraph.ErrInvalidAtomType
}
id := atom.GetID()
set.dirty = true
return set.tree.Delete(txn, id[:])
}
// GetSize returns the total size of all atoms in the set. Returns 0 if the
// tree has no size information.
func (set *idSet) GetSize() *big.Int {
size := set.tree.GetSize()
if size == nil {
size = big.NewInt(0)
}
return size
}
// Has checks if an atom with the given ID exists in the set. Returns true if
// the atom is present, false otherwise.
func (set *idSet) Has(key [64]byte) bool {
_, err := set.tree.Store.GetNodeByKey(
set.tree.SetType,
set.tree.PhaseType,
set.tree.ShardKey,
key[:],
)
return err == nil
}
func (set *idSet) cloneWithStore(
store tries.TreeBackingStore,
) *idSet {
if set == nil {
return nil
}
return &idSet{
dirty: set.dirty,
atomType: set.atomType,
tree: set.tree.CloneWithStore(store),
validator: set.validator,
}
}
func (hg *HypergraphCRDT) GetCoveredPrefix() ([]int, error) {
hg.prefixMu.RLock()
defer hg.prefixMu.RUnlock()
return slices.Clone(hg.coveredPrefix), nil
}
func (hg *HypergraphCRDT) getCoveredPrefix() []int {
hg.prefixMu.RLock()
defer hg.prefixMu.RUnlock()
return slices.Clone(hg.coveredPrefix)
}
func (hg *HypergraphCRDT) SetCoveredPrefix(prefix []int) error {
prefixCopy := slices.Clone(prefix)
hg.prefixMu.Lock()
hg.coveredPrefix = prefixCopy
hg.prefixMu.Unlock()
hg.setsMu.Lock()
for _, s := range hg.hyperedgeAdds {
s.GetTree().CoveredPrefix = prefixCopy
}
for _, s := range hg.hyperedgeRemoves {
s.GetTree().CoveredPrefix = prefixCopy
}
for _, s := range hg.vertexAdds {
s.GetTree().CoveredPrefix = prefixCopy
}
for _, s := range hg.vertexRemoves {
s.GetTree().CoveredPrefix = prefixCopy
}
hg.setsMu.Unlock()
return hg.store.SetCoveredPrefix(prefixCopy)
}
// GetVertexAddsSet returns a specific vertex addition set by shard key.
// Note: This function is exposed for tests only do not use directly unless
// verifying underlying state
func (
hg *HypergraphCRDT,
) GetVertexAddsSet(shardKey tries.ShardKey) hypergraph.IdSet {
return hg.getVertexAddsSet(shardKey)
}
func (
hg *HypergraphCRDT,
) getVertexAddsSet(shardKey tries.ShardKey) hypergraph.IdSet {
coveredPrefix := []int{}
if shardKey.L1 != [3]byte{0, 0, 0} {
coveredPrefix = hg.getCoveredPrefix()
}
adds, _ := hg.getOrCreateIdSet(
shardKey,
hg.vertexAdds,
hg.vertexRemoves,
hypergraph.VertexAtomType,
coveredPrefix,
)
return adds
}
// GetVertexRemovesSet returns a specific vertex removal set by shard key.
// Note: This function is exposed for tests only do not use directly unless
// verifying underlying state
func (
hg *HypergraphCRDT,
) GetVertexRemovesSet(shardKey tries.ShardKey) hypergraph.IdSet {
return hg.getVertexRemovesSet(shardKey)
}
func (
hg *HypergraphCRDT,
) getVertexRemovesSet(shardKey tries.ShardKey) hypergraph.IdSet {
coveredPrefix := []int{}
if shardKey.L1 != [3]byte{0, 0, 0} {
coveredPrefix = hg.getCoveredPrefix()
}
_, removes := hg.getOrCreateIdSet(
shardKey,
hg.vertexAdds,
hg.vertexRemoves,
hypergraph.VertexAtomType,
coveredPrefix,
)
return removes
}
// GetHyperedgeAddsSet returns a specific hyperedge addition set by shard key.
// Note: This function is exposed for tests only do not use directly unless
// verifying underlying state
func (
hg *HypergraphCRDT,
) GetHyperedgeAddsSet(shardKey tries.ShardKey) hypergraph.IdSet {
return hg.getHyperedgeAddsSet(shardKey)
}
func (
hg *HypergraphCRDT,
) getHyperedgeAddsSet(shardKey tries.ShardKey) hypergraph.IdSet {
coveredPrefix := []int{}
if shardKey.L1 != [3]byte{0, 0, 0} {
coveredPrefix = hg.getCoveredPrefix()
}
adds, _ := hg.getOrCreateIdSet(
shardKey,
hg.hyperedgeAdds,
hg.hyperedgeRemoves,
hypergraph.HyperedgeAtomType,
coveredPrefix,
)
return adds
}
// GetHyperedgeRemovesSet returns a specific hyperedge removal set by shard key.
// Note: This function is exposed for tests only do not use directly unless
// verifying underlying state
func (
hg *HypergraphCRDT,
) GetHyperedgeRemovesSet(shardKey tries.ShardKey) hypergraph.IdSet {
return hg.getHyperedgeRemovesSet(shardKey)
}
func (
hg *HypergraphCRDT,
) getHyperedgeRemovesSet(shardKey tries.ShardKey) hypergraph.IdSet {
coveredPrefix := []int{}
if shardKey.L1 != [3]byte{0, 0, 0} {
coveredPrefix = hg.getCoveredPrefix()
}
_, removes := hg.getOrCreateIdSet(
shardKey,
hg.hyperedgeAdds,
hg.hyperedgeRemoves,
hypergraph.HyperedgeAtomType,
coveredPrefix,
)
return removes
}
// getOrCreateIdSet returns the add and remove sets for the given shard. If the
// sets don't exist, they are created with the appropriate parameters.
func (hg *HypergraphCRDT) getOrCreateIdSet(
shardAddr tries.ShardKey,
addMap map[tries.ShardKey]hypergraph.IdSet,
removeMap map[tries.ShardKey]hypergraph.IdSet,
atomType hypergraph.AtomType,
coveredPrefix []int,
) (hypergraph.IdSet, hypergraph.IdSet) {
hg.setsMu.Lock()
defer hg.setsMu.Unlock()
if _, ok := addMap[shardAddr]; !ok {
addMap[shardAddr] = NewIdSet(
atomType,
hypergraph.AddsPhaseType,
shardAddr,
hg.store,
hg.prover,
nil,
coveredPrefix,
)
}
if _, ok := removeMap[shardAddr]; !ok {
removeMap[shardAddr] = NewIdSet(
atomType,
hypergraph.RemovesPhaseType,
shardAddr,
hg.store,
hg.prover,
nil,
coveredPrefix,
)
}
return addMap[shardAddr], removeMap[shardAddr]
}