ceremonyclient/node/crypto/proof_tree_rbls48581_test.go
Cassandra Heart 12996487c3
v2.1.0.18 (#508)
* experiment: reject bad peer info messages

* v2.1.0.18 preview

* add tagged sync

* Add missing hypergraph changes

* small tweaks to sync

* allow local sync, use it for provers with workers

* missing file

* resolve build error

* resolve sync issue, remove raw sync

* resolve deletion promotion bug

* resolve sync abstraction leak from tree deletion changes

* rearrange prover sync

* remove pruning from sync

* restore removed sync flag

* fix: sync, event stream deadlock, heuristic scoring of better shards

* resolve hanging shutdown + pubsub proxy issue

* further bugfixes: sync (restore old leaf sync), pubsub shutdown, merge events

* fix: clean up rust ffi, background coverage events, and sync tweaks

* fix: linking issue for channel, connectivity test aggression, sync regression, join tests

* fix: disjoint sync, improper application of filter

* resolve sync/reel/validation deadlock

* adjust sync to handle no leaf edge cases, multi-path segment traversal

* use simpler sync

* faster, simpler sync with some debug extras

* migration to recalculate

* don't use batch

* square up the roots

* fix nil pointer

* fix: seniority calculation, sync race condition, migration

* make sync dumber

* fix: tree deletion issue

* fix: missing seniority merge request canonical serialization

* address issues from previous commit test

* stale workers should be cleared

* remove missing gap check

* rearrange collect, reduce sync logging noise

* fix: the disjoint leaf/branch sync case

* nuclear option on sync failures

* v2.1.0.18, finalized
2026-02-08 23:51:51 -06:00

2581 lines
83 KiB
Go

//go:build integrationtest
// +build integrationtest
package crypto
import (
"bytes"
"crypto/rand"
"fmt"
"math/big"
mrand "math/rand"
"slices"
"testing"
"go.uber.org/zap"
"source.quilibrium.com/quilibrium/monorepo/bls48581"
"source.quilibrium.com/quilibrium/monorepo/config"
"source.quilibrium.com/quilibrium/monorepo/node/store"
crypto "source.quilibrium.com/quilibrium/monorepo/types/tries"
"source.quilibrium.com/quilibrium/monorepo/verenc"
)
// This test requires native code integration to be useful
var verEncr = verenc.NewMPCitHVerifiableEncryptor(1)
// testConfig returns a test config with in-memory database
func testConfig() *config.Config {
return &config.Config{
DB: &config.DBConfig{InMemoryDONOTUSE: true, Path: ".configtest/store"},
}
}
func BenchmarkLazyVectorCommitmentTreeInsert(b *testing.B) {
l, _ := zap.NewProduction()
cfg := testConfig()
db := store.NewPebbleDB(l, cfg, 0)
store := store.NewPebbleHypergraphStore(cfg.DB, db, l, verEncr, bls48581.NewKZGInclusionProver(l))
tree := &crypto.LazyVectorCommitmentTree{InclusionProver: bls48581.NewKZGInclusionProver(l), Store: store, SetType: "vertex", PhaseType: "adds", ShardKey: crypto.ShardKey{}}
addresses := [][]byte{}
for i := range b.N {
d := make([]byte, 32)
rand.Read(d)
addresses = append(addresses, append(append([]byte{}, make([]byte, 32)...), d...))
err := tree.Insert(nil, d, d, nil, big.NewInt(1))
if err != nil {
b.Errorf("Failed to insert item %d: %v", i, err)
}
}
}
func BenchmarkLazyVectorCommitmentTreeCommit(b *testing.B) {
l, _ := zap.NewProduction()
cfg := testConfig()
db := store.NewPebbleDB(l, cfg, 0)
store := store.NewPebbleHypergraphStore(cfg.DB, db, l, verEncr, bls48581.NewKZGInclusionProver(l))
tree := &crypto.LazyVectorCommitmentTree{InclusionProver: bls48581.NewKZGInclusionProver(l), Store: store, SetType: "vertex", PhaseType: "adds", ShardKey: crypto.ShardKey{}}
addresses := [][]byte{}
for i := range b.N {
d := make([]byte, 32)
rand.Read(d)
addresses = append(addresses, append(append([]byte{}, make([]byte, 32)...), d...))
err := tree.Insert(nil, d, d, nil, big.NewInt(1))
if err != nil {
b.Errorf("Failed to insert item %d: %v", i, err)
}
tree.Commit(nil, false)
}
}
func BenchmarkLazyVectorCommitmentTreeProve(b *testing.B) {
l, _ := zap.NewProduction()
cfg := testConfig()
db := store.NewPebbleDB(l, cfg, 0)
store := store.NewPebbleHypergraphStore(cfg.DB, db, l, verEncr, bls48581.NewKZGInclusionProver(l))
tree := &crypto.LazyVectorCommitmentTree{InclusionProver: bls48581.NewKZGInclusionProver(l), Store: store, SetType: "vertex", PhaseType: "adds", ShardKey: crypto.ShardKey{}}
addresses := [][]byte{}
for i := range b.N {
d := make([]byte, 32)
rand.Read(d)
addresses = append(addresses, append(append([]byte{}, make([]byte, 32)...), d...))
err := tree.Insert(nil, d, d, nil, big.NewInt(1))
if err != nil {
b.Errorf("Failed to insert item %d: %v", i, err)
}
tree.Commit(nil, false)
tree.Prove(d)
}
}
func BenchmarkLazyVectorCommitmentTreeVerify(b *testing.B) {
l, _ := zap.NewProduction()
cfg := testConfig()
db := store.NewPebbleDB(l, cfg, 0)
store := store.NewPebbleHypergraphStore(cfg.DB, db, l, verEncr, bls48581.NewKZGInclusionProver(l))
tree := &crypto.LazyVectorCommitmentTree{InclusionProver: bls48581.NewKZGInclusionProver(l), Store: store, SetType: "vertex", PhaseType: "adds", ShardKey: crypto.ShardKey{}}
addresses := [][]byte{}
for i := range b.N {
d := make([]byte, 32)
rand.Read(d)
addresses = append(addresses, append(append([]byte{}, make([]byte, 32)...), d...))
err := tree.Insert(nil, d, d, nil, big.NewInt(1))
if err != nil {
b.Errorf("Failed to insert item %d: %v", i, err)
}
c := tree.Commit(nil, false)
p := tree.Prove(d)
if valid, _ := tree.Verify(c, p); !valid {
b.Errorf("bad proof")
}
}
}
func TestLazyVectorCommitmentTrees(t *testing.T) {
bls48581.Init()
l, _ := zap.NewProduction()
cfg := testConfig()
db := store.NewPebbleDB(l, cfg, 0)
s := store.NewPebbleHypergraphStore(cfg.DB, db, l, verEncr, bls48581.NewKZGInclusionProver(l))
tree := &crypto.LazyVectorCommitmentTree{InclusionProver: bls48581.NewKZGInclusionProver(l), Store: s, SetType: "vertex", PhaseType: "adds", ShardKey: crypto.ShardKey{}}
// Test single insert
err := tree.Insert(nil, []byte("key1"), []byte("value1"), nil, big.NewInt(1))
if err != nil {
t.Errorf("Failed to insert: %v", err)
}
// Test duplicate key
err = tree.Insert(nil, []byte("key1"), []byte("value2"), nil, big.NewInt(1))
if err != nil {
t.Errorf("Failed to update existing key: %v", err)
}
value, err := tree.Get([]byte("key1"))
if err != nil {
t.Errorf("Failed to get value: %v", err)
}
if !bytes.Equal(value, []byte("value2")) {
t.Errorf("Expected value2, got %s", string(value))
}
// Test empty key
err = tree.Insert(nil, []byte{}, []byte("value"), nil, big.NewInt(1))
if err == nil {
t.Error("Expected error for empty key, got none")
}
l, _ = zap.NewProduction()
cfg = testConfig()
db = store.NewPebbleDB(l, cfg, 0)
s = store.NewPebbleHypergraphStore(cfg.DB, db, l, verEncr, bls48581.NewKZGInclusionProver(l))
tree = &crypto.LazyVectorCommitmentTree{InclusionProver: bls48581.NewKZGInclusionProver(l), Store: s, SetType: "vertex", PhaseType: "adds", ShardKey: crypto.ShardKey{}}
// Test get on empty tree
_, err = tree.Get([]byte("nonexistent"))
if err == nil {
t.Error("Expected error for nonexistent key, got none")
}
// Insert and get
tree.Insert(nil, []byte("key1"), []byte("value1"), nil, big.NewInt(1))
value, err = tree.Get([]byte("key1"))
if err != nil {
t.Errorf("Failed to get value: %v", err)
}
if !bytes.Equal(value, []byte("value1")) {
t.Errorf("Expected value1, got %s", string(value))
}
// Test empty key
_, err = tree.Get([]byte{})
if err == nil {
t.Error("Expected error for empty key, got none")
}
l, _ = zap.NewProduction()
cfg = testConfig()
db = store.NewPebbleDB(l, cfg, 0)
s = store.NewPebbleHypergraphStore(cfg.DB, db, l, verEncr, bls48581.NewKZGInclusionProver(l))
tree = &crypto.LazyVectorCommitmentTree{InclusionProver: bls48581.NewKZGInclusionProver(l), Store: s, SetType: "vertex", PhaseType: "adds", ShardKey: crypto.ShardKey{}}
// Test delete on empty tree
err = tree.Delete(nil, []byte("nonexistent"))
if err != nil {
t.Errorf("Delete on empty tree should not return error: %v", err)
}
// Insert and delete
tree.Insert(nil, []byte("key1"), []byte("value1"), nil, big.NewInt(1))
err = tree.Delete(nil, []byte("key1"))
if err != nil {
t.Errorf("Failed to delete: %v", err)
}
// Verify deletion
v, err := tree.Get([]byte("key1"))
if err == nil {
t.Errorf("Expected error for deleted key, got none, %v", v)
}
// Test empty key
err = tree.Delete(nil, []byte{})
if err == nil {
t.Error("Expected error for empty key, got none")
}
l, _ = zap.NewProduction()
cfg = testConfig()
db = store.NewPebbleDB(l, cfg, 0)
s = store.NewPebbleHypergraphStore(cfg.DB, db, l, verEncr, bls48581.NewKZGInclusionProver(l))
tree = &crypto.LazyVectorCommitmentTree{InclusionProver: bls48581.NewKZGInclusionProver(l), Store: s, SetType: "vertex", PhaseType: "adds", ShardKey: crypto.ShardKey{}}
// Insert keys that share common prefix
keys := []string{
"key1",
"key2",
"key3",
"completely_different",
}
for i, key := range keys {
err := tree.Insert(nil, []byte(key), []byte("value"+string(rune('1'+i))), nil, big.NewInt(1))
if err != nil {
t.Errorf("Failed to insert key %s: %v", key, err)
}
}
// Verify all values
for i, key := range keys {
value, err := tree.Get([]byte(key))
if err != nil {
t.Errorf("Failed to get key %s: %v", key, err)
}
expected := []byte("value" + string(rune('1'+i)))
if !bytes.Equal(value, expected) {
t.Errorf("Expected %s, got %s", string(expected), string(value))
}
}
// Delete middle key
err = tree.Delete(nil, []byte("key2"))
if err != nil {
t.Errorf("Failed to delete key2: %v", err)
}
// Verify key2 is gone but others remain
_, err = tree.Get([]byte("key2"))
if err == nil {
t.Error("Expected error for deleted key2, got none")
}
// Check remaining keys
remainingKeys := []string{"key1", "key3", "completely_different"}
remainingValues := []string{"value1", "value3", "value4"}
for i, key := range remainingKeys {
value, err := tree.Get([]byte(key))
if err != nil {
t.Errorf("Failed to get key %s after deletion: %v", key, err)
}
expected := []byte(remainingValues[i])
if !bytes.Equal(value, expected) {
t.Errorf("Expected %s, got %s", string(expected), string(value))
}
}
l, _ = zap.NewProduction()
cfg = testConfig()
db = store.NewPebbleDB(l, cfg, 0)
s = store.NewPebbleHypergraphStore(cfg.DB, db, l, verEncr, bls48581.NewKZGInclusionProver(l))
tree = &crypto.LazyVectorCommitmentTree{InclusionProver: bls48581.NewKZGInclusionProver(l), Store: s, SetType: "vertex", PhaseType: "adds", ShardKey: crypto.ShardKey{}}
// Empty tree should be empty
emptyRoot := tree.Root
if emptyRoot != nil {
t.Errorf("Expected empty root")
}
// Root should change after insert
tree.Insert(nil, []byte("key1"), []byte("value1"), nil, big.NewInt(1))
firstRoot := tree.Commit(nil, false)
if bytes.Equal(firstRoot, bytes.Repeat([]byte{0x00}, 64)) {
t.Error("Root hash should change after insert")
}
// Root should change after update
tree.Insert(nil, []byte("key1"), []byte("value2"), nil, big.NewInt(1))
secondRoot := tree.Commit(nil, false)
if bytes.Equal(secondRoot, firstRoot) {
t.Error("Root hash should change after update")
}
// Root should change after delete
tree.Delete(nil, []byte("key1"))
thirdRoot := tree.Root
if thirdRoot != nil {
t.Error("Root hash should match empty tree after deleting all entries")
}
l, _ = zap.NewProduction()
cfg = testConfig()
db = store.NewPebbleDB(l, cfg, 0)
s = store.NewPebbleHypergraphStore(cfg.DB, db, l, verEncr, bls48581.NewKZGInclusionProver(l))
tree = &crypto.LazyVectorCommitmentTree{InclusionProver: bls48581.NewKZGInclusionProver(l), Store: s, SetType: "vertex", PhaseType: "adds", ShardKey: crypto.ShardKey{}}
cmptree := &crypto.LazyVectorCommitmentTree{InclusionProver: bls48581.NewKZGInclusionProver(l), Store: s, SetType: "vertex", PhaseType: "adds", ShardKey: crypto.ShardKey{}}
addresses := [][]byte{}
for i := 0; i < 10000; i++ {
d := make([]byte, 32)
rand.Read(d)
addresses = append(addresses, append(append([]byte{}, make([]byte, 32)...), d...))
}
kept := [][]byte{}
for i := 0; i < 5000; i++ {
kept = append(kept, addresses[i])
}
newAdditions := [][]byte{}
for i := 0; i < 5000; i++ {
d := make([]byte, 32)
rand.Read(d)
newAdditions = append(newAdditions, append(append([]byte{}, make([]byte, 32)...), d...))
kept = append(kept, append(append([]byte{}, make([]byte, 32)...), d...))
}
// Insert 10000 items
for i := 0; i < 10000; i++ {
key := addresses[i]
value := addresses[i]
err := tree.Insert(nil, key, value, nil, big.NewInt(1))
if err != nil {
t.Errorf("Failed to insert item %d: %v", i, err)
}
}
if tree.GetSize().Cmp(big.NewInt(10000)) != 0 {
t.Errorf("invalid tree size: %s", tree.GetSize().String())
}
// Insert 10000 items in reverse
for i := 9999; i >= 0; i-- {
key := addresses[i]
value := addresses[i]
err := cmptree.Insert(nil, key, value, nil, big.NewInt(1))
if err != nil {
t.Errorf("Failed to insert item %d: %v", i, err)
}
}
// Verify all items
for i := 0; i < 10000; i++ {
key := addresses[i]
expected := addresses[i]
value, err := tree.Get(key)
if err != nil {
t.Errorf("Failed to get item %d: %v", i, err)
}
cmpvalue, err := cmptree.Get(key)
if err != nil {
t.Errorf("Failed to get item %d: %v", i, err)
}
if !bytes.Equal(value, expected) {
t.Errorf("Item %d: expected %x, got %x", i, string(expected), string(value))
}
if !bytes.Equal(value, cmpvalue) {
t.Errorf("Item %d: expected %x, got %x", i, string(value), string(cmpvalue))
}
}
// delete keys
for i := 5000; i < 10000; i++ {
key := addresses[i]
tree.Delete(nil, key)
}
if tree.GetSize().Cmp(big.NewInt(5000)) != 0 {
t.Errorf("invalid tree size: %s", tree.GetSize().String())
}
// add new
for i := 0; i < 5000; i++ {
tree.Insert(nil, newAdditions[i], newAdditions[i], nil, big.NewInt(1))
}
if tree.GetSize().Cmp(big.NewInt(10000)) != 0 {
t.Errorf("invalid tree size: %s", tree.GetSize().String())
}
cmptree = &crypto.LazyVectorCommitmentTree{InclusionProver: bls48581.NewKZGInclusionProver(l), Store: s, SetType: "vertex", PhaseType: "adds", ShardKey: crypto.ShardKey{}}
for i := 0; i < 10000; i++ {
cmptree.Insert(nil, kept[i], kept[i], nil, big.NewInt(1))
}
// Verify all items
for i := 0; i < 10000; i++ {
key := kept[i]
expected := kept[i]
value, err := tree.Get(key)
if err != nil {
t.Errorf("Failed to get item %d: %v", i, err)
}
cmpvalue, err := cmptree.Get(key)
if err != nil {
t.Errorf("Failed to get item %d: %v", i, err)
}
if !bytes.Equal(value, expected) {
t.Errorf("Item %d: expected %x, got %x", i, string(expected), string(value))
}
if !bytes.Equal(expected, cmpvalue) {
t.Errorf("Item %d: expected %x, got %x", i, string(value), string(cmpvalue))
}
}
tcommit := tree.Commit(nil, false)
cmptcommit := cmptree.Commit(nil, false)
if !bytes.Equal(tcommit, cmptcommit) {
t.Errorf("tree mismatch, %x, %x", tcommit, cmptcommit)
}
proofs := tree.Prove(addresses[500])
if valid, _ := tree.Verify(tcommit, proofs); !valid {
t.Errorf("proof failed")
}
leaves, longestBranch := tree.GetMetadata()
if leaves != 10000 {
t.Errorf("incorrect leaf count, %d, %d,", 10000, leaves)
}
// Statistical assumption, can be flaky
if longestBranch < 4 || longestBranch > 5 {
crypto.DebugNode(tree.SetType, tree.PhaseType, tree.ShardKey, tree.Root, 0, "")
t.Errorf("unlikely longest branch count, %d, %d, review this tree", 4, longestBranch)
}
}
// TestTreeLeafReaddition tests that re-adding the exact same leaf does not
// increase the Size metadata, does not invalidate commitments, and does not
// make previous proofs invalid.
func TestTreeLeafReaddition(t *testing.T) {
l, _ := zap.NewProduction()
cfg := testConfig()
db := store.NewPebbleDB(l, cfg, 0)
s := store.NewPebbleHypergraphStore(cfg.DB, db, l, verEncr, bls48581.NewKZGInclusionProver(l))
tree := &crypto.LazyVectorCommitmentTree{InclusionProver: bls48581.NewKZGInclusionProver(l), Store: s, SetType: "vertex", PhaseType: "adds", ShardKey: crypto.ShardKey{}}
// Generate 1000 random 64-byte keys and corresponding values
numKeys := 1000
keys := make([][]byte, numKeys)
values := make([][]byte, numKeys)
for i := 0; i < numKeys; i++ {
// Generate random 64-byte key
key := make([]byte, 64)
rand.Read(key)
keys[i] = key
// Generate random value
val := make([]byte, 32)
rand.Read(val)
values[i] = val
// Insert into tree
err := tree.Insert(nil, key, val, nil, big.NewInt(1))
if err != nil {
t.Errorf("Failed to insert item %d: %v", i, err)
}
}
// Get original size metadata
originalSize := tree.GetSize()
expectedSize := big.NewInt(int64(numKeys))
if originalSize.Cmp(expectedSize) != 0 {
t.Errorf("Expected tree size to be %s, got %s", expectedSize.String(), originalSize.String())
}
// Commit the tree and get root commitment
originalRoot := tree.Commit(nil, false)
// Choose a random key to test with
testIndex := mrand.Intn(numKeys)
testKey := keys[testIndex]
testValue := values[testIndex]
// Generate proof for the selected leaf
originalProof := tree.Prove(testKey)
// Validate the proof
if valid, _ := tree.Verify(originalRoot, originalProof); !valid {
t.Errorf("Failed to verify original proof")
}
// Re-add the exact same leaf
err := tree.Insert(nil, testKey, testValue, nil, big.NewInt(1))
if err != nil {
t.Errorf("Failed to re-insert the same leaf: %v", err)
}
// Check size hasn't changed
newSize := tree.GetSize()
if newSize.Cmp(originalSize) != 0 {
t.Errorf("Expected size to remain %s after re-adding same leaf, got %s", originalSize.String(), newSize.String())
}
// Commit again
newRoot := tree.Commit(nil, false)
// Check commitment hasn't changed
if !bytes.Equal(originalRoot, newRoot) {
t.Errorf("Expected commitment to remain the same after re-adding the same leaf")
}
// Verify the original proof still works
if valid, _ := tree.Verify(newRoot, originalProof); !valid {
t.Errorf("Original proof no longer valid after re-adding the same leaf")
}
}
// TestTreeRemoveReaddLeaf tests that removing a leaf and re-adding it
// decreases and increases the size metadata appropriately, invalidates commitments,
// but proofs still work after recommitting the tree.
func TestTreeRemoveReaddLeaf(t *testing.T) {
l, _ := zap.NewProduction()
cfg := testConfig()
db := store.NewPebbleDB(l, cfg, 0)
s := store.NewPebbleHypergraphStore(cfg.DB, db, l, verEncr, bls48581.NewKZGInclusionProver(l))
tree := &crypto.LazyVectorCommitmentTree{InclusionProver: bls48581.NewKZGInclusionProver(l), Store: s, SetType: "vertex", PhaseType: "adds", ShardKey: crypto.ShardKey{}}
// Generate 1000 random 64-byte keys and corresponding values
numKeys := 1000
keys := make([][]byte, numKeys)
values := make([][]byte, numKeys)
for i := 0; i < numKeys; i++ {
// Generate random 64-byte key
key := make([]byte, 64)
rand.Read(key)
keys[i] = key
// Generate random value
val := make([]byte, 32)
rand.Read(val)
values[i] = val
// Insert into tree
err := tree.Insert(nil, key, val, nil, big.NewInt(1))
if err != nil {
t.Errorf("Failed to insert item %d: %v", i, err)
}
}
// Get original size metadata
originalSize := tree.GetSize()
expectedSize := big.NewInt(int64(numKeys))
if originalSize.Cmp(expectedSize) != 0 {
t.Errorf("Expected tree size to be %s, got %s", expectedSize.String(), originalSize.String())
}
// Commit the tree and get root commitment
originalRoot := tree.Commit(nil, false)
// Choose a random key to test with
testIndex := mrand.Intn(numKeys)
testKey := keys[testIndex]
testValue := values[testIndex]
// Generate proof for the selected leaf
originalProof := tree.Prove(testKey)
// Validate the proof
if valid, _ := tree.Verify(originalRoot, originalProof); !valid {
t.Errorf("Failed to verify original proof")
}
// Remove the leaf
err := tree.Delete(nil, testKey)
if err != nil {
t.Errorf("Failed to delete leaf: %v", err)
}
// Check size has decreased
reducedSize := tree.GetSize()
expectedReducedSize := big.NewInt(int64(numKeys - 1))
if reducedSize.Cmp(expectedReducedSize) != 0 {
t.Errorf("Expected size to be %s after removing leaf, got %s", expectedReducedSize.String(), reducedSize.String())
}
// Commit after deletion
deletedRoot := tree.Commit(nil, false)
// Check commitment has changed
if bytes.Equal(originalRoot, deletedRoot) {
t.Errorf("Expected commitment to change after removing a leaf")
}
// Verify the proof fails
if valid, _ := tree.Verify(deletedRoot, originalProof); valid {
t.Errorf("Original proof still verified")
}
// Re-add the same leaf
err = tree.Insert(nil, testKey, testValue, nil, big.NewInt(1))
if err != nil {
t.Errorf("Failed to re-add leaf: %v", err)
}
// Check size has increased back to original
restoredSize := tree.GetSize()
if restoredSize.Cmp(originalSize) != 0 {
t.Errorf("Expected size to be restored to %s after re-adding leaf, got %s", originalSize.String(), restoredSize.String())
}
// Commit again
restoredRoot := tree.Commit(nil, false)
// Check commitment is different due to the rebuild process
if bytes.Equal(deletedRoot, restoredRoot) {
t.Errorf("Expected commitment to change after re-adding the leaf")
}
// Generate a new proof
newProof := tree.Prove(testKey)
// Verify the new proof works
if valid, _ := tree.Verify(restoredRoot, newProof); !valid {
t.Errorf("New proof not valid after re-adding the leaf")
}
// Check if original and new root match - should match since it's the same data
if bytes.Equal(originalRoot, restoredRoot) {
t.Logf("Original and restored roots match, which is expected for deterministic implementations")
} else {
t.Fatalf("Note: Original and restored roots differ, which is acceptable for some implementations with randomized components")
}
}
// TestTreeLongestBranch tests that the longest branch metadata value is always
// correct.
func TestTreeLongestBranch(t *testing.T) {
l, _ := zap.NewProduction()
cfg := testConfig()
db := store.NewPebbleDB(l, cfg, 0)
s := store.NewPebbleHypergraphStore(cfg.DB, db, l, verEncr, bls48581.NewKZGInclusionProver(l))
tree := &crypto.LazyVectorCommitmentTree{InclusionProver: bls48581.NewKZGInclusionProver(l), Store: s, SetType: "vertex", PhaseType: "adds", ShardKey: crypto.ShardKey{}}
// Test with an empty tree
leaves, longestBranch := tree.GetMetadata()
if leaves != 0 {
t.Errorf("Expected 0 leaves in empty tree, got %d", leaves)
}
if longestBranch != 0 {
t.Errorf("Expected longest branch of 0 in empty tree, got %d", longestBranch)
}
// Insert one item with a random 64-byte key
key1 := make([]byte, 64)
rand.Read(key1)
value1 := make([]byte, 32)
rand.Read(value1)
tree.Insert(nil, key1, value1, nil, big.NewInt(1))
tree.Commit(nil, false)
leaves, longestBranch = tree.GetMetadata()
if leaves != 1 {
t.Errorf("Expected 1 leaf after single insert, got %d", leaves)
}
if longestBranch != 0 {
t.Errorf("Expected longest branch of 0 with single leaf, got %d", longestBranch)
}
// Generate batch 1: Add 999 more random keys (total 1000)
batch1Size := 999
batch1Keys := make([][]byte, batch1Size)
for i := 0; i < batch1Size; i++ {
key := make([]byte, 64)
rand.Read(key)
batch1Keys[i] = key
val := make([]byte, 32)
rand.Read(val)
err := tree.Insert(nil, key, val, nil, big.NewInt(1))
if err != nil {
t.Errorf("Failed to insert batch 1 item %d: %v", i, err)
}
}
origCommit := tree.Commit(nil, false)
origProof := tree.Prove(batch1Keys[500])
// With 1000 random keys, we should have created some branches
leaves, longestBranch = tree.GetMetadata()
expectedLeaves := 1000
if leaves != expectedLeaves {
t.Errorf("Expected %d leaves after batch 1, got %d", expectedLeaves, leaves)
}
// Due to random distribution of keys, we expect a minimum branch depth
// For 1000 64-byte keys, we expect a minimum branch depth of at least 3
expectedMinLongestBranch := 3
if longestBranch < expectedMinLongestBranch {
t.Errorf("Expected longest branch of at least %d with 1000 random keys, got %d",
expectedMinLongestBranch, longestBranch)
}
expectedMaxLongestBranch := 4
if longestBranch > expectedMaxLongestBranch {
t.Errorf("Expected longest branch to be at most %d with 1000 random keys, got %d",
expectedMaxLongestBranch, longestBranch)
}
t.Logf("Tree with 1000 random keys has longest branch of %d", longestBranch)
// Generate batch 2: Insert 1000 more items with controlled prefixes to create
// deeper branches. We'll create keys with the same prefix bytes to force
// branch creation
batch2Size := 1000
batch2Keys := make([][]byte, batch2Size)
// Create a common prefix for first 8 bytes (forcing branch at this level)
commonPrefix := make([]byte, 8)
rand.Read(commonPrefix)
for i := 0; i < batch2Size; i++ {
key := make([]byte, 64)
// First 8 bytes are the same for all keys
copy(key[:8], commonPrefix)
// Next bytes are random but within controlled ranges to create subgroups
// This creates deeper branch structures
key[8] = byte(i % 4) // Creates 4 major groups
key[9] = byte(i % 16) // Creates 16 subgroups
// Rest is random
rand.Read(key[10:])
batch2Keys[i] = key
val := make([]byte, 32)
rand.Read(val)
err := tree.Insert(nil, key, val, nil, big.NewInt(1))
if err != nil {
t.Errorf("Failed to insert batch 2 item %d: %v", i, err)
}
}
batch2Commit := tree.Commit(nil, false)
// With controlled prefixes, branches should be deeper
leaves, newLongestBranch := tree.GetMetadata()
expectedLeaves = 2000 // 1000 from batch 1 + 1000 from batch 2
if leaves != expectedLeaves {
t.Errorf("Expected %d leaves after batch 2, got %d", expectedLeaves, leaves)
}
// With our specific prefix design, branches should be deeper
// The depth should have increased from batch 1
if newLongestBranch <= longestBranch {
t.Errorf("Expected longest branch to increase after adding batch 2 with controlled prefixes, "+
"previous: %d, current: %d", longestBranch, newLongestBranch)
}
t.Logf("Tree with 2000 keys including controlled prefixes has longest branch of %d", newLongestBranch)
// Delete all batch 2 keys
for _, key := range batch2Keys {
err := tree.Delete(nil, key)
if err != nil {
t.Errorf("Failed to delete structured key: %v", err)
}
}
newCommit := tree.Commit(nil, false)
if valid, _ := tree.Verify(newCommit, origProof); !valid {
t.Errorf("Proof does not sustain after tree rollback.")
}
if bytes.Equal(origCommit, batch2Commit) {
t.Errorf("Commits match after altering tree to second batch\norig: %x\n new: %x", origCommit, batch2Commit)
}
if !bytes.Equal(origCommit, newCommit) {
t.Errorf("Commits do not match after reverting tree to original first batch\norig: %x\n new: %x", origCommit, newCommit)
}
// After deleting all batch 2 keys, we should be back to the original branch depth
leaves, finalLongestBranch := tree.GetMetadata()
expectedLeaves = 1000 // Back to just batch 1
if leaves != expectedLeaves {
t.Errorf("Expected %d leaves after deleting batch 2, got %d", expectedLeaves, leaves)
}
// Longest branch should have decreased since we removed the structured keys
if finalLongestBranch > newLongestBranch {
t.Errorf("Expected longest branch to decrease after deleting structured keys, "+
"previous: %d, current: %d", newLongestBranch, finalLongestBranch)
}
// Must be the same
expectedDiffFromOriginal := 0
diff := int(finalLongestBranch) - int(longestBranch)
if diff < 0 {
diff = -diff // Absolute value
}
if diff != expectedDiffFromOriginal {
t.Logf("Note: Longest branch after deleting batch 2 (%d) differs significantly from "+
"original batch 1 longest branch (%d)", finalLongestBranch, longestBranch)
}
}
// TestTreeBranchStructure tests that the tree structure is preserved after
// adding and removing leaves that cause branch creation due to shared prefixes.
func TestTreeBranchStructure(t *testing.T) {
l, _ := zap.NewProduction()
cfg := testConfig()
db := store.NewPebbleDB(l, cfg, 0)
s := store.NewPebbleHypergraphStore(cfg.DB, db, l, verEncr, bls48581.NewKZGInclusionProver(l))
tree := &crypto.LazyVectorCommitmentTree{InclusionProver: bls48581.NewKZGInclusionProver(l), Store: s, SetType: "vertex", PhaseType: "adds", ShardKey: crypto.ShardKey{}}
// Create three base keys with 64-byte size
numBaseKeys := 3
baseKeys := make([][]byte, numBaseKeys)
baseValues := make([][]byte, numBaseKeys)
// Create base keys that share same first byte and have a controlled second and
// third, but are otherwise random
for i := 0; i < numBaseKeys; i++ {
key := make([]byte, 64)
// 101000 001010 0000
key[0] = 0xA0 // Common first byte
key[1] = 0xA0
// finalizes the third path nibble as i -> 0, 1, 2
key[2] = byte((i << 6) & 0xFF)
rand.Read(key[3:])
baseKeys[i] = key
val := make([]byte, 32)
rand.Read(val)
baseValues[i] = val
err := tree.Insert(nil, key, val, nil, big.NewInt(1))
if err != nil {
t.Errorf("Failed to insert base key %d: %v", i, err)
}
}
// Commit the initial state
initialRoot := tree.Commit(nil, false)
// Copy the size value to avoid aliasing (GetSize returns pointer to internal big.Int)
initialSize := new(big.Int).Set(tree.GetSize())
// Confirm initial state
if initialSize.Cmp(big.NewInt(3)) != 0 {
t.Errorf("Expected initial size of 3, got %s", initialSize.String())
}
// Get proofs for existing keys to check later
initialProof := tree.Prove(baseKeys[0])
initialProof2 := tree.Prove(baseKeys[1])
if bytes.Equal(initialProof.Multiproof.GetProof(), initialProof2.Multiproof.GetProof()) {
t.Errorf("proof should not be equal")
}
// Add a key that forces a new branch creation due to shared prefix with
// baseKeys[0]
branchKey := make([]byte, 64)
copy(branchKey, baseKeys[0]) // Start with same bytes as baseKeys[0]
// Modify just one byte in the middle to create branch point
branchKey[32] ^= 0xFF
branchValue := make([]byte, 32)
rand.Read(branchValue)
err := tree.Insert(nil, branchKey, branchValue, nil, big.NewInt(1))
if err != nil {
t.Errorf("Failed to insert branch-creating key: %v", err)
}
// Commit after adding the branch-creating key
branchRoot := tree.Commit(nil, false)
branchSize := tree.GetSize()
// Confirm size increased
if branchSize.Cmp(big.NewInt(4)) != 0 {
t.Errorf("Expected size of 4 after adding branch key, got %s", branchSize.String())
}
// Confirm commitment changed
if bytes.Equal(initialRoot, branchRoot) {
t.Errorf("Expected root to change after adding branch-creating key")
}
// Remove the key that created the branch
err = tree.Delete(nil, branchKey)
if err != nil {
t.Errorf("Failed to delete branch-creating key: %v", err)
}
// Commit after removing the branch-creating key
restoredRoot := tree.Commit(nil, false)
restoredSize := tree.GetSize()
// Confirm size returned to original
if restoredSize.Cmp(initialSize) != 0 {
t.Errorf("Expected size to return to %s after removing branch key, got %s",
initialSize.String(), restoredSize.String())
}
// The root should match the initial root if the structure was perfectly
// restored
if !bytes.Equal(initialRoot, restoredRoot) {
t.Errorf("Tree structure not perfectly restored: initial root and restored root differ")
}
// Confirm original proof still works
if valid, _ := tree.Verify(restoredRoot, initialProof); !valid {
t.Errorf("Original proof no longer valid after restoring tree structure")
}
// More complex test with multiple branch levels
// Create groups of keys with controlled prefixes
numGroups := int64(2)
keysPerGroup := int64(500)
groupPrefixLength := 16 // First 16 bytes should be identical within a group
groupKeys := make([][][]byte, numGroups)
for i := int64(0); i < numGroups; i++ {
// Create group prefix - first 16 bytes are the same within each group
groupPrefix := make([]byte, groupPrefixLength)
rand.Read(groupPrefix)
// Ensure that the group is out of band of the initial set.
groupPrefix[0] = 0xFF
// Now create the keys for this group
groupKeys[i] = make([][]byte, keysPerGroup)
for j := int64(0); j < keysPerGroup; j++ {
key := make([]byte, 64)
// Copy the group prefix
copy(key[:groupPrefixLength], groupPrefix)
// Fill the rest with random bytes
rand.Read(key[groupPrefixLength:])
groupKeys[i][j] = key
val := make([]byte, 32)
rand.Read(val)
err := tree.Insert(nil, key, val, nil, big.NewInt(1))
if err != nil {
t.Errorf("Failed to insert complex key [group %d, key %d]: %v", i, j, err)
}
}
}
// Commit after adding all complex keys
tree.Commit(nil, false)
complexSize := tree.GetSize()
expectedComplexSize := big.NewInt(3 + numGroups*keysPerGroup)
if complexSize.Cmp(expectedComplexSize) != 0 {
t.Errorf("Expected complex tree size of %s, got %s",
expectedComplexSize.String(), complexSize.String())
}
// Remove just one group
for j := int64(0); j < keysPerGroup; j++ {
err := tree.Delete(nil, groupKeys[0][j])
if err != nil {
t.Errorf("Failed to delete key from group 0: %v", err)
}
}
// Commit after removal
c := tree.Commit(nil, false)
afterGroupRemoval := tree.GetSize()
expectedAfterRemoval := big.NewInt(3 + keysPerGroup)
if afterGroupRemoval.Cmp(expectedAfterRemoval) != 0 {
t.Errorf("Expected tree size of %s after group removal, got %s",
expectedAfterRemoval.String(), afterGroupRemoval.String())
}
// Confirm full proof
fullProof := tree.Prove(baseKeys[0])
// value, err := tree.Get(baseKeys[0])
// if err != nil {
// t.Errorf("Fetch had error: %v", err)
// }
if valid, _ := tree.Verify(c, fullProof); !valid {
t.Errorf("somehow the regular proof failed?")
}
}
func TestNonLazyProveVerify(t *testing.T) {
l, _ := zap.NewProduction()
prover := bls48581.NewKZGInclusionProver(l)
tree := &crypto.VectorCommitmentTree{}
// Generate 1000 random 64-byte keys and corresponding values
numKeys := 1000
keys := make([][]byte, numKeys)
values := make([][]byte, numKeys)
for i := 0; i < numKeys; i++ {
// Generate random 64-byte key
key := make([]byte, 64)
rand.Read(key)
keys[i] = key
// Generate random value
val := make([]byte, 32)
rand.Read(val)
values[i] = val
// Insert into tree
err := tree.Insert(key, val, nil, big.NewInt(1))
if err != nil {
t.Errorf("Failed to insert item %d: %v", i, err)
}
}
// Get original size metadata
originalSize := tree.GetSize()
expectedSize := big.NewInt(int64(numKeys))
if originalSize.Cmp(expectedSize) != 0 {
t.Errorf("Expected tree size to be %s, got %s", expectedSize.String(), originalSize.String())
}
// Commit the tree and get root commitment
originalRoot := tree.Commit(prover, false)
// Choose a random key to test with
testIndex := mrand.Intn(numKeys)
testKey := keys[testIndex]
testValue := values[testIndex]
// Generate proof for the selected leaf
originalProof := tree.Prove(prover, testKey)
// Validate the proof
if !crypto.VerifyTreeTraversalProof(prover, originalRoot, originalProof) {
t.Errorf("Failed to verify original proof")
}
// Re-add the exact same leaf
err := tree.Insert(testKey, testValue, nil, big.NewInt(1))
if err != nil {
t.Errorf("Failed to re-insert the same leaf: %v", err)
}
// Check size hasn't changed
newSize := tree.GetSize()
if newSize.Cmp(originalSize) != 0 {
t.Errorf("Expected size to remain %s after re-adding same leaf, got %s", originalSize.String(), newSize.String())
}
// Commit again
newRoot := tree.Commit(prover, false)
// Check commitment hasn't changed
if !bytes.Equal(originalRoot, newRoot) {
t.Errorf("Expected commitment to remain the same after re-adding the same leaf")
}
// Verify the original proof still works
if !crypto.VerifyTreeTraversalProof(prover, newRoot, originalProof) {
t.Errorf("Original proof no longer valid after re-adding the same leaf")
}
}
// TestDeleteLeafPromotion tests the case where deleting a leaf from a branch
// leaves only one remaining child that is also a leaf, triggering leaf promotion.
// This covers the "case 1" path with a leaf child in the Delete method.
// Uses 5000 keys to create deep tree structure with many leaf promotion opportunities.
func TestDeleteLeafPromotion(t *testing.T) {
bls48581.Init()
l, _ := zap.NewProduction()
db := store.NewPebbleDB(l, &config.Config{DB: &config.DBConfig{InMemoryDONOTUSE: true, Path: ".configtest/store"}}, 0)
s := store.NewPebbleHypergraphStore(&config.DBConfig{InMemoryDONOTUSE: true}, db, l, verEncr, bls48581.NewKZGInclusionProver(l))
tree := &crypto.LazyVectorCommitmentTree{InclusionProver: bls48581.NewKZGInclusionProver(l), Store: s, SetType: "vertex", PhaseType: "adds", ShardKey: crypto.ShardKey{}}
// Create pairs of keys that share long prefixes to force leaf promotions
// Each pair shares 60 bytes, creating branches with exactly 2 leaf children
numPairs := 2500
keys := make([][]byte, numPairs*2)
values := make([][]byte, numPairs*2)
for i := 0; i < numPairs; i++ {
// Create a pair of keys sharing 60 bytes
key1 := make([]byte, 64)
key2 := make([]byte, 64)
rand.Read(key1)
copy(key2, key1[:60])
// Differ in last 4 bytes
key2[60] = key1[60] ^ 0xFF
rand.Read(key2[61:])
keys[i*2] = key1
keys[i*2+1] = key2
value1 := make([]byte, 32)
value2 := make([]byte, 32)
rand.Read(value1)
rand.Read(value2)
values[i*2] = value1
values[i*2+1] = value2
}
// Insert all keys
for i, key := range keys {
if err := tree.Insert(nil, key, values[i], nil, big.NewInt(1)); err != nil {
t.Fatalf("Failed to insert key %d: %v", i, err)
}
}
// Commit initial state
root1 := tree.Commit(nil, false)
t.Logf("Inserted %d keys, tree size: %s", len(keys), tree.GetSize().String())
leaves, depth := tree.GetMetadata()
t.Logf("Initial tree: %d leaves, longest branch: %d", leaves, depth)
// Delete one key from each pair - this triggers leaf promotion for the remaining key
// Delete the second key of each pair (odd indices)
deletedCount := 0
for i := 1; i < len(keys); i += 2 {
if err := tree.Delete(nil, keys[i]); err != nil {
t.Fatalf("Failed to delete key %d: %v", i, err)
}
deletedCount++
}
t.Logf("Deleted %d keys (one from each pair)", deletedCount)
// Verify deleted keys are gone
for i := 1; i < len(keys); i += 2 {
if _, err := tree.Get(keys[i]); err == nil {
t.Fatalf("key %d still exists after deletion", i)
}
}
// Verify remaining keys (first of each pair) still exist with correct values
for i := 0; i < len(keys); i += 2 {
val, err := tree.Get(keys[i])
if err != nil {
t.Fatalf("key %d not found after leaf promotion: %v", i, err)
}
if !bytes.Equal(val, values[i]) {
t.Fatalf("key %d value corrupted after leaf promotion", i)
}
}
// Verify tree size
expectedSize := big.NewInt(int64(numPairs))
if tree.GetSize().Cmp(expectedSize) != 0 {
t.Fatalf("Expected tree size %s, got %s", expectedSize.String(), tree.GetSize().String())
}
// Commit and verify proofs
root2 := tree.Commit(nil, false)
if bytes.Equal(root1, root2) {
t.Fatalf("Root should have changed after deletions")
}
leaves2, depth2 := tree.GetMetadata()
t.Logf("After deletion: %d leaves, longest branch: %d", leaves2, depth2)
// Verify proofs for remaining keys
for i := 0; i < len(keys); i += 2 {
proof := tree.Prove(keys[i])
if valid, _ := tree.Verify(root2, proof); !valid {
t.Fatalf("Proof failed for key %d after leaf promotion", i)
}
}
}
// TestDeleteBranchPromotion tests the case where deleting a leaf from a branch
// leaves only one remaining child that is itself a branch, triggering branch
// promotion/merging. This covers the "case 1" path with a branch child.
// Uses 10000+ keys organized in groups to create many branch promotion scenarios.
func TestDeleteBranchPromotion(t *testing.T) {
bls48581.Init()
l, _ := zap.NewProduction()
db := store.NewPebbleDB(l, &config.Config{DB: &config.DBConfig{InMemoryDONOTUSE: true, Path: ".configtest/store"}}, 0)
s := store.NewPebbleHypergraphStore(&config.DBConfig{InMemoryDONOTUSE: true}, db, l, verEncr, bls48581.NewKZGInclusionProver(l))
tree := &crypto.LazyVectorCommitmentTree{InclusionProver: bls48581.NewKZGInclusionProver(l), Store: s, SetType: "vertex", PhaseType: "adds", ShardKey: crypto.ShardKey{}}
// Create structure where each "group" has:
// - 1 "loner" key that diverges early
// - Multiple keys that share a longer prefix (forming a sub-branch)
// When we delete the loner, the sub-branch gets promoted with prefix merging
//
// Branch (group root)
// / \
// Loner SubBranch
// / | \
// Key1 Key2 Key3...
numGroups := 1000
keysPerSubBranch := 10
totalKeys := numGroups * (1 + keysPerSubBranch)
keys := make([][]byte, 0, totalKeys)
values := make([][]byte, 0, totalKeys)
lonerIndices := make([]int, 0, numGroups)
for g := 0; g < numGroups; g++ {
// Generate group prefix (first 8 bytes unique per group)
groupPrefix := make([]byte, 8)
rand.Read(groupPrefix)
// Create loner key - diverges at byte 8
lonerKey := make([]byte, 64)
copy(lonerKey[:8], groupPrefix)
lonerKey[8] = 0x00 // Loner goes one direction
rand.Read(lonerKey[9:])
lonerValue := make([]byte, 32)
rand.Read(lonerValue)
lonerIndices = append(lonerIndices, len(keys))
keys = append(keys, lonerKey)
values = append(values, lonerValue)
// Create sub-branch keys - share longer prefix (bytes 8-50), diverge at byte 50
subBranchPrefix := make([]byte, 42)
subBranchPrefix[0] = 0xFF // Sub-branch goes other direction
rand.Read(subBranchPrefix[1:])
for i := 0; i < keysPerSubBranch; i++ {
subKey := make([]byte, 64)
copy(subKey[:8], groupPrefix)
copy(subKey[8:50], subBranchPrefix)
subKey[50] = byte(i) // Each sub-key differs at byte 50
rand.Read(subKey[51:])
subValue := make([]byte, 32)
rand.Read(subValue)
keys = append(keys, subKey)
values = append(values, subValue)
}
}
t.Logf("Created %d keys in %d groups (%d loners + %d per sub-branch)",
len(keys), numGroups, numGroups, keysPerSubBranch)
// Insert all keys
for i, key := range keys {
if err := tree.Insert(nil, key, values[i], nil, big.NewInt(1)); err != nil {
t.Fatalf("Failed to insert key %d: %v", i, err)
}
}
root1 := tree.Commit(nil, false)
leaves1, depth1 := tree.GetMetadata()
t.Logf("Initial tree: %d leaves, longest branch: %d", leaves1, depth1)
// Delete all loner keys - this triggers branch promotion for each group
for _, idx := range lonerIndices {
if err := tree.Delete(nil, keys[idx]); err != nil {
t.Fatalf("Failed to delete loner key %d: %v", idx, err)
}
}
t.Logf("Deleted %d loner keys", len(lonerIndices))
// Verify loners are gone
for _, idx := range lonerIndices {
if _, err := tree.Get(keys[idx]); err == nil {
t.Fatalf("Loner key %d still exists after deletion", idx)
}
}
// Verify all sub-branch keys still exist with correct values
lonerSet := make(map[int]bool)
for _, idx := range lonerIndices {
lonerSet[idx] = true
}
remainingCount := 0
for i, key := range keys {
if lonerSet[i] {
continue
}
val, err := tree.Get(key)
if err != nil {
t.Fatalf("Sub-branch key %d not found after branch promotion: %v", i, err)
}
if !bytes.Equal(val, values[i]) {
t.Fatalf("Sub-branch key %d value corrupted after branch promotion", i)
}
remainingCount++
}
// Verify tree size
expectedSize := big.NewInt(int64(remainingCount))
if tree.GetSize().Cmp(expectedSize) != 0 {
t.Fatalf("Expected tree size %s, got %s", expectedSize.String(), tree.GetSize().String())
}
root2 := tree.Commit(nil, false)
if bytes.Equal(root1, root2) {
t.Fatalf("Root should have changed after deletions")
}
leaves2, depth2 := tree.GetMetadata()
t.Logf("After branch promotions: %d leaves, longest branch: %d", leaves2, depth2)
// Verify proofs for a sample of remaining keys
sampleSize := 100
step := remainingCount / sampleSize
if step < 1 {
step = 1
}
proofCount := 0
for i, key := range keys {
if lonerSet[i] {
continue
}
if proofCount%step == 0 {
proof := tree.Prove(key)
if valid, _ := tree.Verify(root2, proof); !valid {
t.Fatalf("Proof failed for key %d after branch promotion", i)
}
}
proofCount++
}
t.Logf("Verified %d proofs", sampleSize)
}
// TestDeleteWithLazyLoadedBranches tests deletion when branch children haven't
// been loaded into memory yet (the FullyLoaded=false path). This specifically
// tests the bug fix where child paths were computed using `path` instead of
// `n.FullPrefix`.
// Uses 10000 keys with deep prefix structures to thoroughly test lazy loading.
func TestDeleteWithLazyLoadedBranches(t *testing.T) {
bls48581.Init()
l, _ := zap.NewProduction()
// First tree: insert data and commit to storage
db := store.NewPebbleDB(l, &config.Config{DB: &config.DBConfig{InMemoryDONOTUSE: true, Path: ".configtest/store"}}, 0)
s := store.NewPebbleHypergraphStore(&config.DBConfig{InMemoryDONOTUSE: true}, db, l, verEncr, bls48581.NewKZGInclusionProver(l))
tree1 := &crypto.LazyVectorCommitmentTree{InclusionProver: bls48581.NewKZGInclusionProver(l), Store: s, SetType: "vertex", PhaseType: "adds", ShardKey: crypto.ShardKey{}}
// Create keys with deep prefix structures to ensure branches have non-trivial prefixes
// This is critical for testing the bug where path != n.FullPrefix
numKeys := 10000
keys := make([][]byte, numKeys)
values := make([][]byte, numKeys)
// Create hierarchical key structure:
// - First 2 bytes: common prefix (creates branch with prefix)
// - Bytes 2-3: group identifier (16 groups)
// - Bytes 4-7: subgroup identifier (creates nested branches with prefixes)
// - Rest: random
for i := 0; i < numKeys; i++ {
key := make([]byte, 64)
// Common prefix for all
key[0] = 0xAB
key[1] = 0xCD
// Group (16 groups)
key[2] = byte(i % 16)
// Subgroup - shares prefix within group
key[3] = byte((i / 16) % 16)
key[4] = byte((i / 256) % 16)
key[5] = byte((i / 4096) % 16)
// Rest is random to spread within subgroups
rand.Read(key[6:])
keys[i] = key
value := make([]byte, 32)
rand.Read(value)
values[i] = value
if err := tree1.Insert(nil, key, value, nil, big.NewInt(1)); err != nil {
t.Fatalf("Failed to insert key %d: %v", i, err)
}
}
// Commit to persist to storage
root1 := tree1.Commit(nil, false)
leaves1, depth1 := tree1.GetMetadata()
t.Logf("Initial tree: %d keys, %d leaves, longest branch: %d", numKeys, leaves1, depth1)
// Create a NEW tree instance that will load lazily from storage
// This simulates what happens after a restart - branches are not in memory
tree2 := &crypto.LazyVectorCommitmentTree{
InclusionProver: bls48581.NewKZGInclusionProver(l),
Store: s,
SetType: "vertex",
PhaseType: "adds",
ShardKey: crypto.ShardKey{},
}
// Load the root from storage - the root's children won't be loaded (FullyLoaded=false)
rootNode, err := s.GetNodeByPath("vertex", "adds", crypto.ShardKey{}, []int{})
if err != nil {
t.Fatalf("Failed to load root from storage: %v", err)
}
tree2.Root = rootNode
// Verify we can get a sample of keys from the lazy-loaded tree
for i := 0; i < numKeys; i += 100 {
if _, err := tree2.Get(keys[i]); err != nil {
t.Fatalf("key %d not found in lazy-loaded tree: %v", i, err)
}
}
// Delete half the keys from the lazy-loaded tree in a pattern that exercises
// different branches. Delete every other key to spread deletions across the tree.
deleteCount := 0
for i := 0; i < numKeys; i += 2 {
if err := tree2.Delete(nil, keys[i]); err != nil {
t.Fatalf("Failed to delete key %d from lazy-loaded tree: %v", i, err)
}
deleteCount++
}
t.Logf("Deleted %d keys from lazy-loaded tree", deleteCount)
// Verify deleted keys are gone
for i := 0; i < numKeys; i += 2 {
if _, err := tree2.Get(keys[i]); err == nil {
t.Fatalf("key %d still exists after deletion", i)
}
}
// Verify remaining keys (odd indices) still exist and have correct values
remainingCount := 0
for i := 1; i < numKeys; i += 2 {
val, err := tree2.Get(keys[i])
if err != nil {
t.Fatalf("key %d not found after deleting other keys: %v", i, err)
}
if !bytes.Equal(val, values[i]) {
t.Fatalf("key %d value corrupted after deletion", i)
}
remainingCount++
}
// Commit the changes
root2 := tree2.Commit(nil, false)
if bytes.Equal(root1, root2) {
t.Fatalf("Root should have changed after deletions")
}
leaves2, depth2 := tree2.GetMetadata()
t.Logf("After deletion: %d leaves, longest branch: %d", leaves2, depth2)
// Verify size is correct
expectedSize := big.NewInt(int64(remainingCount))
if tree2.GetSize().Cmp(expectedSize) != 0 {
t.Fatalf("Expected size %s, got %s", expectedSize.String(), tree2.GetSize().String())
}
// Now create a fresh tree with the same remaining keys to compare
// This verifies the lazy-loaded delete produced a correct tree
tree3 := &crypto.LazyVectorCommitmentTree{
InclusionProver: bls48581.NewKZGInclusionProver(l),
Store: s,
SetType: "vertex",
PhaseType: "compare",
ShardKey: crypto.ShardKey{},
}
// Insert only the keys that should remain (odd indices)
for i := 1; i < numKeys; i += 2 {
if err := tree3.Insert(nil, keys[i], values[i], nil, big.NewInt(1)); err != nil {
t.Fatalf("Failed to insert key %d into comparison tree: %v", i, err)
}
}
root3 := tree3.Commit(nil, false)
// The roots should match since they have the same data
if !bytes.Equal(root2, root3) {
t.Fatalf("Lazy-loaded delete tree root doesn't match fresh tree root\nGot: %x\nExpected: %x", root2, root3)
}
t.Logf("Lazy-loaded delete tree matches fresh tree with same keys")
// Verify proofs work on the comparison tree for a sample of keys
proofCount := 0
for i := 1; i < numKeys; i += 20 {
proof := tree3.Prove(keys[i])
if valid, _ := tree3.Verify(root3, proof); !valid {
t.Fatalf("Proof failed for key %d on comparison tree", i)
}
proofCount++
}
t.Logf("Verified %d proofs on comparison tree", proofCount)
}
// TestDeleteBranchCollapse tests the case where deleting a leaf causes a branch
// to have zero children remaining, triggering branch collapse (case 0).
// Tests with 5000 keys, deleting all to verify complete tree collapse.
func TestDeleteBranchCollapse(t *testing.T) {
bls48581.Init()
l, _ := zap.NewProduction()
db := store.NewPebbleDB(l, &config.Config{DB: &config.DBConfig{InMemoryDONOTUSE: true, Path: ".configtest/store"}}, 0)
s := store.NewPebbleHypergraphStore(&config.DBConfig{InMemoryDONOTUSE: true}, db, l, verEncr, bls48581.NewKZGInclusionProver(l))
tree := &crypto.LazyVectorCommitmentTree{InclusionProver: bls48581.NewKZGInclusionProver(l), Store: s, SetType: "vertex", PhaseType: "adds", ShardKey: crypto.ShardKey{}}
// Insert many keys
numKeys := 5000
keys := make([][]byte, numKeys)
values := make([][]byte, numKeys)
for i := 0; i < numKeys; i++ {
key := make([]byte, 64)
rand.Read(key)
keys[i] = key
value := make([]byte, 32)
rand.Read(value)
values[i] = value
if err := tree.Insert(nil, key, value, nil, big.NewInt(1)); err != nil {
t.Fatalf("Failed to insert key %d: %v", i, err)
}
}
tree.Commit(nil, false)
leaves, depth := tree.GetMetadata()
t.Logf("Initial tree: %d leaves, longest branch: %d", leaves, depth)
// Delete all keys - each deletion may trigger branch collapses
for i, key := range keys {
if err := tree.Delete(nil, key); err != nil {
t.Fatalf("Failed to delete key %d: %v", i, err)
}
// Verify key is gone
if _, err := tree.Get(key); err == nil {
t.Fatalf("Key %d still exists after deletion", i)
}
// Check size decrements properly
expectedSize := big.NewInt(int64(numKeys - i - 1))
if tree.GetSize().Cmp(expectedSize) != 0 {
t.Fatalf("After deleting %d keys: expected size %s, got %s",
i+1, expectedSize.String(), tree.GetSize().String())
}
}
// Tree should be empty
if tree.Root != nil {
t.Fatalf("Expected nil root after deleting all keys")
}
// Size should be 0
if tree.GetSize().Cmp(big.NewInt(0)) != 0 {
t.Fatalf("Expected tree size 0, got %s", tree.GetSize().String())
}
t.Logf("Successfully deleted all %d keys and collapsed tree", numKeys)
// Re-insert all keys and verify tree is rebuilt correctly
for i, key := range keys {
if err := tree.Insert(nil, key, values[i], nil, big.NewInt(1)); err != nil {
t.Fatalf("Failed to re-insert key %d: %v", i, err)
}
}
tree.Commit(nil, false)
leaves2, depth2 := tree.GetMetadata()
t.Logf("Rebuilt tree: %d leaves, longest branch: %d", leaves2, depth2)
if leaves2 != numKeys {
t.Fatalf("Expected %d leaves after rebuild, got %d", numKeys, leaves2)
}
}
// compareTreeBranches walks two trees and logs differences
func compareTreeBranches(t *testing.T, name1 string, node1 crypto.LazyVectorCommitmentNode, name2 string, node2 crypto.LazyVectorCommitmentNode, depth int) {
indent := ""
for i := 0; i < depth; i++ {
indent += " "
}
if node1 == nil && node2 == nil {
return
}
if node1 == nil {
t.Logf("%s%s is nil but %s is not", indent, name1, name2)
return
}
if node2 == nil {
t.Logf("%s%s is nil but %s is not", indent, name2, name1)
return
}
b1, ok1 := node1.(*crypto.LazyVectorCommitmentBranchNode)
b2, ok2 := node2.(*crypto.LazyVectorCommitmentBranchNode)
if ok1 != ok2 {
t.Logf("%sType mismatch: %s is branch=%v, %s is branch=%v", indent, name1, ok1, name2, ok2)
return
}
if !ok1 {
// Both are leaves
return
}
// Compare Prefix (only log if different or if there's also FullPrefix difference)
prefixMatch := slices.Equal(b1.Prefix, b2.Prefix)
fullPrefixMatch := slices.Equal(b1.FullPrefix, b2.FullPrefix)
if !prefixMatch || !fullPrefixMatch {
if !prefixMatch {
t.Logf("%sPrefix mismatch at depth %d:", indent, depth)
t.Logf("%s %s.Prefix = %v (len=%d)", indent, name1, b1.Prefix, len(b1.Prefix))
t.Logf("%s %s.Prefix = %v (len=%d)", indent, name2, b2.Prefix, len(b2.Prefix))
}
}
// Compare FullPrefix
if !slices.Equal(b1.FullPrefix, b2.FullPrefix) {
t.Logf("%sFullPrefix mismatch at depth %d:", indent, depth)
t.Logf("%s %s.FullPrefix = %v", indent, name1, b1.FullPrefix)
t.Logf("%s %s.FullPrefix = %v", indent, name2, b2.FullPrefix)
}
// Compare children
for i := 0; i < 64; i++ {
c1, c2 := b1.Children[i], b2.Children[i]
if c1 != nil || c2 != nil {
compareTreeBranches(t, fmt.Sprintf("%s.Child[%d]", name1, i), c1, fmt.Sprintf("%s.Child[%d]", name2, i), c2, depth+1)
}
}
}
// TestDeleteDeepNestedPrefixes tests deletion in a tree with deeply nested
// branch prefixes, ensuring prefix merging works correctly.
// Uses 5000 keys organized into groups with very long shared prefixes.
func TestDeleteDeepNestedPrefixes(t *testing.T) {
bls48581.Init()
l, _ := zap.NewProduction()
db := store.NewPebbleDB(l, &config.Config{DB: &config.DBConfig{InMemoryDONOTUSE: true, Path: ".configtest/store"}}, 0)
s := store.NewPebbleHypergraphStore(&config.DBConfig{InMemoryDONOTUSE: true}, db, l, verEncr, bls48581.NewKZGInclusionProver(l))
tree := &crypto.LazyVectorCommitmentTree{InclusionProver: bls48581.NewKZGInclusionProver(l), Store: s, SetType: "vertex", PhaseType: "adds", ShardKey: crypto.ShardKey{}}
// Create groups of keys that share very long prefixes within each group
// This creates deep branch structures with long prefix compression
numGroups := 100
keysPerGroup := 50
prefixLength := 58 // Keys share first 58 bytes within group, differ in last 6
keys := make([][]byte, 0, numGroups*keysPerGroup)
values := make([][]byte, 0, numGroups*keysPerGroup)
groupBoundaries := make([]int, numGroups+1)
for g := 0; g < numGroups; g++ {
groupBoundaries[g] = len(keys)
// Generate group prefix (first 58 bytes shared within group)
groupPrefix := make([]byte, prefixLength)
rand.Read(groupPrefix)
for i := 0; i < keysPerGroup; i++ {
key := make([]byte, 64)
copy(key[:prefixLength], groupPrefix)
// Vary the last 6 bytes within group
key[58] = byte(i)
key[59] = byte(i >> 8)
rand.Read(key[60:])
keys = append(keys, key)
value := make([]byte, 32)
rand.Read(value)
values = append(values, value)
}
}
groupBoundaries[numGroups] = len(keys)
t.Logf("Created %d keys in %d groups (%d keys/group, %d-byte shared prefix)",
len(keys), numGroups, keysPerGroup, prefixLength)
// Insert all keys
for i, key := range keys {
if err := tree.Insert(nil, key, values[i], nil, big.NewInt(1)); err != nil {
t.Fatalf("Failed to insert key %d: %v", i, err)
}
}
root1 := tree.Commit(nil, false)
leaves1, depth1 := tree.GetMetadata()
t.Logf("Initial tree: %d leaves, longest branch: %d", leaves1, depth1)
// Debug: check initial root Prefix
if rootBranch, ok := tree.Root.(*crypto.LazyVectorCommitmentBranchNode); ok {
t.Logf("Initial root: Prefix=%v, FullPrefix=%v", rootBranch.Prefix, rootBranch.FullPrefix)
}
// Delete all keys from half the groups
// This exercises prefix merging as groups collapse
deletedGroups := numGroups / 2
deletedCount := 0
for g := 0; g < deletedGroups; g++ {
start := groupBoundaries[g]
end := groupBoundaries[g+1]
for i := start; i < end; i++ {
if err := tree.Delete(nil, keys[i]); err != nil {
t.Fatalf("Failed to delete key %d (group %d): %v", i, g, err)
}
deletedCount++
}
}
t.Logf("Deleted %d keys from %d groups", deletedCount, deletedGroups)
// Verify deleted keys are gone
for g := 0; g < deletedGroups; g++ {
start := groupBoundaries[g]
end := groupBoundaries[g+1]
for i := start; i < end; i++ {
if _, err := tree.Get(keys[i]); err == nil {
t.Fatalf("Key %d still exists after deletion", i)
}
}
}
// Verify remaining keys exist with correct values
for g := deletedGroups; g < numGroups; g++ {
start := groupBoundaries[g]
end := groupBoundaries[g+1]
for i := start; i < end; i++ {
val, err := tree.Get(keys[i])
if err != nil {
t.Fatalf("Key %d not found after deletions: %v", i, err)
}
if !bytes.Equal(val, values[i]) {
t.Fatalf("Key %d value corrupted after deletions", i)
}
}
}
// Verify size
expectedRemaining := (numGroups - deletedGroups) * keysPerGroup
if tree.GetSize().Cmp(big.NewInt(int64(expectedRemaining))) != 0 {
t.Fatalf("Expected size %d, got %s", expectedRemaining, tree.GetSize().String())
}
root2 := tree.Commit(nil, false)
leaves2, depth2 := tree.GetMetadata()
t.Logf("After deletion: %d leaves, longest branch: %d", leaves2, depth2)
// Debug: check root Prefix before re-insert
if rootBranch, ok := tree.Root.(*crypto.LazyVectorCommitmentBranchNode); ok {
t.Logf("Root before re-insert: Prefix=%v, FullPrefix=%v", rootBranch.Prefix, rootBranch.FullPrefix)
}
// Now re-insert deleted keys and verify tree matches original
for g := 0; g < deletedGroups; g++ {
start := groupBoundaries[g]
end := groupBoundaries[g+1]
for i := start; i < end; i++ {
if err := tree.Insert(nil, keys[i], values[i], nil, big.NewInt(1)); err != nil {
t.Fatalf("Failed to re-insert key %d: %v", i, err)
}
}
}
root3 := tree.Commit(nil, false)
leaves3, depth3 := tree.GetMetadata()
t.Logf("After re-insert: %d leaves, longest branch: %d", leaves3, depth3)
// Debug: check final root Prefix
if rootBranch, ok := tree.Root.(*crypto.LazyVectorCommitmentBranchNode); ok {
t.Logf("Final root: Prefix=%v, FullPrefix=%v", rootBranch.Prefix, rootBranch.FullPrefix)
}
// Build a fresh tree with all keys to compare structure
db2 := store.NewPebbleDB(l, &config.Config{DB: &config.DBConfig{InMemoryDONOTUSE: true, Path: ".configtest/store2"}}, 0)
s2 := store.NewPebbleHypergraphStore(&config.DBConfig{InMemoryDONOTUSE: true}, db2, l, verEncr, bls48581.NewKZGInclusionProver(l))
freshTree := &crypto.LazyVectorCommitmentTree{InclusionProver: bls48581.NewKZGInclusionProver(l), Store: s2, SetType: "vertex", PhaseType: "adds", ShardKey: crypto.ShardKey{}}
for i, key := range keys {
if err := freshTree.Insert(nil, key, values[i], nil, big.NewInt(1)); err != nil {
t.Fatalf("Failed to insert key %d in fresh tree: %v", i, err)
}
}
rootFresh := freshTree.Commit(nil, false)
t.Logf("Fresh tree root: %x", rootFresh[:16])
// Compare re-inserted tree to fresh tree
if !bytes.Equal(root3, rootFresh) {
t.Logf("Re-inserted tree differs from fresh tree!")
t.Logf(" Re-inserted: %x", root3[:16])
t.Logf(" Fresh: %x", rootFresh[:16])
// Walk both trees to find differences
compareTreeBranches(t, "restored", tree.Root, "fresh", freshTree.Root, 0)
}
// The tree structure should be equivalent (same root commitment)
if !bytes.Equal(root1, root3) {
t.Fatalf("Root mismatch after delete-and-reinsert cycle\nOriginal: %x\nRestored: %x", root1, root3)
}
if !bytes.Equal(root1, root2) {
t.Logf("Root changed after partial deletion (expected)")
}
// Verify proofs work for a sample of keys
for i := 0; i < len(keys); i += 50 {
proof := tree.Prove(keys[i])
if valid, _ := tree.Verify(root3, proof); !valid {
t.Fatalf("Proof failed for key %d after reinsert", i)
}
}
}
// TestDeleteMultipleChildrenRemaining tests the default case in Delete where
// multiple children remain after deletion (childCount > 1).
// Uses 10000 random keys and deletes half, ensuring many branches retain multiple children.
func TestDeleteMultipleChildrenRemaining(t *testing.T) {
bls48581.Init()
l, _ := zap.NewProduction()
db := store.NewPebbleDB(l, &config.Config{DB: &config.DBConfig{InMemoryDONOTUSE: true, Path: ".configtest/store"}}, 0)
s := store.NewPebbleHypergraphStore(&config.DBConfig{InMemoryDONOTUSE: true}, db, l, verEncr, bls48581.NewKZGInclusionProver(l))
tree := &crypto.LazyVectorCommitmentTree{InclusionProver: bls48581.NewKZGInclusionProver(l), Store: s, SetType: "vertex", PhaseType: "adds", ShardKey: crypto.ShardKey{}}
// Create many random keys - with random distribution, most branches will have multiple children
numKeys := 10000
keys := make([][]byte, numKeys)
values := make([][]byte, numKeys)
for i := 0; i < numKeys; i++ {
key := make([]byte, 64)
rand.Read(key)
keys[i] = key
value := make([]byte, 32)
rand.Read(value)
values[i] = value
if err := tree.Insert(nil, key, values[i], nil, big.NewInt(1)); err != nil {
t.Fatalf("Failed to insert key %d: %v", i, err)
}
}
root1 := tree.Commit(nil, false)
leaves1, depth1 := tree.GetMetadata()
t.Logf("Initial tree: %d leaves, longest branch: %d", leaves1, depth1)
// Delete every 3rd key - this pattern ensures most branches retain multiple children
// (unlike deleting every other key which might create more promotions)
deletedIndices := make(map[int]bool)
deleteCount := 0
for i := 0; i < numKeys; i += 3 {
if err := tree.Delete(nil, keys[i]); err != nil {
t.Fatalf("Failed to delete key %d: %v", i, err)
}
deletedIndices[i] = true
deleteCount++
}
t.Logf("Deleted %d keys (every 3rd key)", deleteCount)
// Verify deleted keys are gone
for idx := range deletedIndices {
if _, err := tree.Get(keys[idx]); err == nil {
t.Fatalf("Key %d still exists after deletion", idx)
}
}
// Verify remaining keys exist with correct values
remainingCount := 0
for i := 0; i < numKeys; i++ {
if deletedIndices[i] {
continue
}
val, err := tree.Get(keys[i])
if err != nil {
t.Fatalf("Key %d not found after deletion: %v", i, err)
}
if !bytes.Equal(val, values[i]) {
t.Fatalf("Key %d value corrupted after deletion", i)
}
remainingCount++
}
// Verify size
expectedSize := big.NewInt(int64(remainingCount))
if tree.GetSize().Cmp(expectedSize) != 0 {
t.Fatalf("Expected size %s, got %s", expectedSize.String(), tree.GetSize().String())
}
root2 := tree.Commit(nil, false)
if bytes.Equal(root1, root2) {
t.Fatalf("Root should have changed after deletion")
}
leaves2, depth2 := tree.GetMetadata()
t.Logf("After deletion: %d leaves, longest branch: %d", leaves2, depth2)
// Verify proofs for a sample of remaining keys
proofCount := 0
for i := 0; i < numKeys; i += 10 {
if deletedIndices[i] {
continue
}
proof := tree.Prove(keys[i])
if valid, _ := tree.Verify(root2, proof); !valid {
t.Fatalf("Proof failed for key %d", i)
}
proofCount++
}
t.Logf("Verified %d proofs", proofCount)
// Create comparison tree with same remaining keys
tree2 := &crypto.LazyVectorCommitmentTree{
InclusionProver: bls48581.NewKZGInclusionProver(l),
Store: s,
SetType: "vertex",
PhaseType: "compare",
ShardKey: crypto.ShardKey{},
}
for i := 0; i < numKeys; i++ {
if deletedIndices[i] {
continue
}
if err := tree2.Insert(nil, keys[i], values[i], nil, big.NewInt(1)); err != nil {
t.Fatalf("Failed to insert key %d into comparison tree: %v", i, err)
}
}
root3 := tree2.Commit(nil, false)
// The roots should match
if !bytes.Equal(root2, root3) {
t.Fatalf("Delete tree root doesn't match fresh tree root\nGot: %x\nExpected: %x", root2, root3)
}
t.Logf("Delete tree matches fresh tree with same remaining keys")
}
// TestDeleteBranchPromotionFullPrefixBug tests that when a delete operation
// triggers branch promotion (where a parent branch is replaced by its only
// remaining child branch), the child's FullPrefix is correctly updated to
// reflect its new position in the tree.
//
// The bug: In lazy_proof_tree.go Delete(), when case 1 (single child remaining)
// handles a branch child, it updates childBranch.Prefix but NOT childBranch.FullPrefix.
// The node is then stored at the parent's path (n.FullPrefix), but the stored data
// contains the OLD childBranch.FullPrefix. When loaded later, the node has wrong
// FullPrefix, causing child lookups and commitment computation to fail.
func TestDeleteBranchPromotionFullPrefixBug(t *testing.T) {
bls48581.Init()
l, _ := zap.NewProduction()
db := store.NewPebbleDB(l, &config.Config{DB: &config.DBConfig{InMemoryDONOTUSE: true, Path: ".configtest/store"}}, 0)
s := store.NewPebbleHypergraphStore(&config.DBConfig{InMemoryDONOTUSE: true}, db, l, verEncr, bls48581.NewKZGInclusionProver(l))
tree := &crypto.LazyVectorCommitmentTree{
InclusionProver: bls48581.NewKZGInclusionProver(l),
Store: s,
SetType: "vertex",
PhaseType: "adds",
ShardKey: crypto.ShardKey{},
}
// Create a specific structure that will trigger branch promotion:
//
// Root Branch (prefix=[])
// / \
// Loner1 SubBranch (prefix=[X,Y,Z])
// / \
// Key1 Key2
//
// When we delete Loner1, SubBranch should be promoted to root with its
// prefix merged. The bug is that SubBranch.FullPrefix is not updated.
// All keys start with 0xAA to share initial path
// Loner diverges early (at nibble 2)
// SubBranch keys share a longer prefix and diverge later
// Loner key: 0xAA 0x00 ... (diverges at nibble 2 with value 0)
lonerKey := make([]byte, 64)
lonerKey[0] = 0xAA
lonerKey[1] = 0x00 // This makes nibbles [10, 10, 0, 0, ...]
rand.Read(lonerKey[2:])
// SubBranch keys: 0xAA 0xFF ... (diverges at nibble 2 with value F)
// Key1 and Key2 share more prefix and diverge at byte 32
key1 := make([]byte, 64)
key1[0] = 0xAA
key1[1] = 0xFF // Nibbles [10, 10, 15, 15, ...]
for i := 2; i < 32; i++ {
key1[i] = 0xBB // Shared prefix within sub-branch
}
key1[32] = 0x00 // Key1 diverges here
rand.Read(key1[33:])
key2 := make([]byte, 64)
copy(key2, key1)
key2[32] = 0xFF // Key2 diverges here differently
rand.Read(key2[33:])
// Insert all keys
err := tree.Insert(nil, lonerKey, lonerKey, nil, big.NewInt(1))
if err != nil {
t.Fatalf("Failed to insert loner key: %v", err)
}
err = tree.Insert(nil, key1, key1, nil, big.NewInt(1))
if err != nil {
t.Fatalf("Failed to insert key1: %v", err)
}
err = tree.Insert(nil, key2, key2, nil, big.NewInt(1))
if err != nil {
t.Fatalf("Failed to insert key2: %v", err)
}
// Commit to persist everything
rootBefore := tree.Commit(nil, false)
t.Logf("Root before deletion: %x", rootBefore[:16])
// Verify all keys exist
if _, err := tree.Get(lonerKey); err != nil {
t.Fatalf("Loner key not found before deletion: %v", err)
}
if _, err := tree.Get(key1); err != nil {
t.Fatalf("Key1 not found before deletion: %v", err)
}
if _, err := tree.Get(key2); err != nil {
t.Fatalf("Key2 not found before deletion: %v", err)
}
// Delete the loner - this triggers branch promotion for SubBranch
err = tree.Delete(nil, lonerKey)
if err != nil {
t.Fatalf("Failed to delete loner key: %v", err)
}
// Verify loner is gone
if _, err := tree.Get(lonerKey); err == nil {
t.Fatalf("Loner key still exists after deletion")
}
// At this point, the in-memory tree should still work because
// the node references are still valid (even if FullPrefix is wrong)
val1, err := tree.Get(key1)
if err != nil {
t.Fatalf("Key1 not found after deletion (in-memory): %v", err)
}
if !bytes.Equal(val1, key1) {
t.Fatalf("Key1 value corrupted after deletion")
}
val2, err := tree.Get(key2)
if err != nil {
t.Fatalf("Key2 not found after deletion (in-memory): %v", err)
}
if !bytes.Equal(val2, key2) {
t.Fatalf("Key2 value corrupted after deletion")
}
// Commit after deletion
rootAfterDelete := tree.Commit(nil, false)
t.Logf("Root after deletion: %x", rootAfterDelete[:16])
// Now create a FRESH tree that loads from storage
// This is the critical test - if FullPrefix is wrong in storage,
// the fresh tree will have issues
tree2 := &crypto.LazyVectorCommitmentTree{
InclusionProver: bls48581.NewKZGInclusionProver(l),
Store: s,
SetType: "vertex",
PhaseType: "adds",
ShardKey: crypto.ShardKey{},
}
// Load root from storage
rootNode, err := s.GetNodeByPath("vertex", "adds", crypto.ShardKey{}, []int{})
if err != nil {
t.Fatalf("Failed to load root from storage: %v", err)
}
tree2.Root = rootNode
// Try to get key1 from the fresh tree
// If FullPrefix bug exists, this may fail because child lookups use wrong paths
val1Fresh, err := tree2.Get(key1)
if err != nil {
t.Fatalf("Key1 not found in fresh tree loaded from storage: %v", err)
}
if !bytes.Equal(val1Fresh, key1) {
t.Fatalf("Key1 value wrong in fresh tree")
}
val2Fresh, err := tree2.Get(key2)
if err != nil {
t.Fatalf("Key2 not found in fresh tree loaded from storage: %v", err)
}
if !bytes.Equal(val2Fresh, key2) {
t.Fatalf("Key2 value wrong in fresh tree")
}
// Commit the fresh tree and compare roots
rootFresh := tree2.Commit(nil, false)
t.Logf("Root from fresh tree: %x", rootFresh[:16])
if !bytes.Equal(rootAfterDelete, rootFresh) {
t.Fatalf("Root mismatch! In-memory tree produced different root than fresh tree loaded from storage\n"+
"In-memory: %x\n"+
"Fresh: %x\n"+
"This indicates FullPrefix corruption during branch promotion",
rootAfterDelete, rootFresh)
}
// Also compare against a completely fresh tree built from scratch with same keys
tree3 := &crypto.LazyVectorCommitmentTree{
InclusionProver: bls48581.NewKZGInclusionProver(l),
Store: s,
SetType: "vertex",
PhaseType: "scratch",
ShardKey: crypto.ShardKey{},
}
err = tree3.Insert(nil, key1, key1, nil, big.NewInt(1))
if err != nil {
t.Fatalf("Failed to insert key1 into scratch tree: %v", err)
}
err = tree3.Insert(nil, key2, key2, nil, big.NewInt(1))
if err != nil {
t.Fatalf("Failed to insert key2 into scratch tree: %v", err)
}
rootScratch := tree3.Commit(nil, false)
t.Logf("Root from scratch tree: %x", rootScratch[:16])
// Log tree structures for debugging
if branch, ok := tree.Root.(*crypto.LazyVectorCommitmentBranchNode); ok {
t.Logf("After-delete tree root: Prefix=%v, FullPrefix=%v", branch.Prefix, branch.FullPrefix)
for i, child := range branch.Children {
if child != nil {
switch c := child.(type) {
case *crypto.LazyVectorCommitmentBranchNode:
t.Logf(" After-delete child[%d]: Branch Prefix=%v, FullPrefix=%v", i, c.Prefix, c.FullPrefix)
case *crypto.LazyVectorCommitmentLeafNode:
t.Logf(" After-delete child[%d]: Leaf Key=%x...", i, c.Key[:8])
}
}
}
}
if branch, ok := tree3.Root.(*crypto.LazyVectorCommitmentBranchNode); ok {
t.Logf("Scratch tree root: Prefix=%v, FullPrefix=%v", branch.Prefix, branch.FullPrefix)
for i, child := range branch.Children {
if child != nil {
switch c := child.(type) {
case *crypto.LazyVectorCommitmentBranchNode:
t.Logf(" Scratch child[%d]: Branch Prefix=%v, FullPrefix=%v", i, c.Prefix, c.FullPrefix)
case *crypto.LazyVectorCommitmentLeafNode:
t.Logf(" Scratch child[%d]: Leaf Key=%x...", i, c.Key[:8])
}
}
}
}
if !bytes.Equal(rootAfterDelete, rootScratch) {
t.Fatalf("Root mismatch! Delete-promoted tree produced different root than scratch tree\n"+
"After delete: %x\n"+
"From scratch: %x\n"+
"This indicates structural difference after branch promotion",
rootAfterDelete, rootScratch)
}
t.Log("All roots match - branch promotion preserved correct tree structure")
}
// TestDeleteBranchPromotionDeepNesting tests branch promotion with deeply nested
// structures where multiple levels of promotion may occur.
func TestDeleteBranchPromotionDeepNesting(t *testing.T) {
bls48581.Init()
l, _ := zap.NewProduction()
db := store.NewPebbleDB(l, &config.Config{DB: &config.DBConfig{InMemoryDONOTUSE: true, Path: ".configtest/store"}}, 0)
s := store.NewPebbleHypergraphStore(&config.DBConfig{InMemoryDONOTUSE: true}, db, l, verEncr, bls48581.NewKZGInclusionProver(l))
tree := &crypto.LazyVectorCommitmentTree{
InclusionProver: bls48581.NewKZGInclusionProver(l),
Store: s,
SetType: "vertex",
PhaseType: "deep",
ShardKey: crypto.ShardKey{},
}
// Create a chain of nested branches, each with a loner and a sub-branch
// When we delete all loners from innermost to outermost, we trigger
// multiple successive branch promotions
// Structure:
// Root
// |-- Loner0
// |-- Branch1
// |-- Loner1
// |-- Branch2
// |-- Loner2
// |-- Branch3
// |-- Key1
// |-- Key2
// Create keys with progressively longer shared prefixes
numLoners := 5
loners := make([][]byte, numLoners)
// Base prefix that all keys share
basePrefix := []byte{0xAA, 0xBB, 0xCC, 0xDD}
for i := 0; i < numLoners; i++ {
loner := make([]byte, 64)
copy(loner, basePrefix)
// Each loner diverges at a different depth
// Loner i diverges at byte 4+i with value 0x00
for j := 4; j < 4+i; j++ {
loner[j] = 0xFF // Shared with sub-branch up to this point
}
loner[4+i] = 0x00 // Diverges here
rand.Read(loner[5+i:])
loners[i] = loner
}
// Final keys share the longest prefix and diverge at the end
key1 := make([]byte, 64)
copy(key1, basePrefix)
for i := 4; i < 32; i++ {
key1[i] = 0xFF
}
key1[32] = 0x11
rand.Read(key1[33:])
key2 := make([]byte, 64)
copy(key2, key1)
key2[32] = 0x22
rand.Read(key2[33:])
// Insert all keys
for i, loner := range loners {
if err := tree.Insert(nil, loner, loner, nil, big.NewInt(1)); err != nil {
t.Fatalf("Failed to insert loner %d: %v", i, err)
}
}
if err := tree.Insert(nil, key1, key1, nil, big.NewInt(1)); err != nil {
t.Fatalf("Failed to insert key1: %v", err)
}
if err := tree.Insert(nil, key2, key2, nil, big.NewInt(1)); err != nil {
t.Fatalf("Failed to insert key2: %v", err)
}
initialRoot := tree.Commit(nil, false)
leaves, depth := tree.GetMetadata()
t.Logf("Initial tree: %d leaves, depth %d", leaves, depth)
// Delete loners from outermost to innermost (reverse order)
// Each deletion should trigger branch promotion
for i := 0; i < numLoners; i++ {
if err := tree.Delete(nil, loners[i]); err != nil {
t.Fatalf("Failed to delete loner %d: %v", i, err)
}
// After each deletion, verify remaining keys are accessible
if _, err := tree.Get(key1); err != nil {
t.Fatalf("Key1 not accessible after deleting loner %d: %v", i, err)
}
if _, err := tree.Get(key2); err != nil {
t.Fatalf("Key2 not accessible after deleting loner %d: %v", i, err)
}
// Commit and check structure
root := tree.Commit(nil, false)
t.Logf("After deleting loner %d, root: %x", i, root[:8])
}
finalRoot := tree.Commit(nil, false)
if bytes.Equal(initialRoot, finalRoot) {
t.Fatalf("Root should have changed after deletions")
}
// Load fresh tree from storage
tree2 := &crypto.LazyVectorCommitmentTree{
InclusionProver: bls48581.NewKZGInclusionProver(l),
Store: s,
SetType: "vertex",
PhaseType: "deep",
ShardKey: crypto.ShardKey{},
}
rootNode, err := s.GetNodeByPath("vertex", "deep", crypto.ShardKey{}, []int{})
if err != nil {
t.Fatalf("Failed to load root: %v", err)
}
tree2.Root = rootNode
// Verify keys accessible from fresh tree
if _, err := tree2.Get(key1); err != nil {
t.Fatalf("Key1 not found in fresh tree: %v", err)
}
if _, err := tree2.Get(key2); err != nil {
t.Fatalf("Key2 not found in fresh tree: %v", err)
}
// Verify roots match
freshRoot := tree2.Commit(nil, false)
if !bytes.Equal(finalRoot, freshRoot) {
t.Fatalf("Root mismatch after deep nesting promotion\n"+
"Original: %x\n"+
"Fresh: %x", finalRoot, freshRoot)
}
// Compare with scratch tree
tree3 := &crypto.LazyVectorCommitmentTree{
InclusionProver: bls48581.NewKZGInclusionProver(l),
Store: s,
SetType: "vertex",
PhaseType: "deepscratch",
ShardKey: crypto.ShardKey{},
}
tree3.Insert(nil, key1, key1, nil, big.NewInt(1))
tree3.Insert(nil, key2, key2, nil, big.NewInt(1))
scratchRoot := tree3.Commit(nil, false)
if !bytes.Equal(finalRoot, scratchRoot) {
t.Fatalf("Root mismatch with scratch tree\n"+
"After deletes: %x\n"+
"From scratch: %x", finalRoot, scratchRoot)
}
t.Log("Deep nesting branch promotion test passed")
}
// TestBranchPromotionPathIndexCorruption specifically tests if the path index
// is corrupted when a branch is promoted during delete. This test exercises the
// scenario where a non-root branch is promoted and then accessed via path lookup.
//
// The bug hypothesis: When a branch is promoted (becomes the only child and takes
// its parent's place), the code updates childBranch.Prefix but NOT childBranch.FullPrefix.
// When InsertNode is called for a branch, it uses node.FullPrefix (not the path param)
// to store the path index. This means the path index points to the wrong location.
func TestBranchPromotionPathIndexCorruption(t *testing.T) {
bls48581.Init()
l, _ := zap.NewProduction()
db := store.NewPebbleDB(l, &config.Config{DB: &config.DBConfig{InMemoryDONOTUSE: true, Path: ".configtest/pathidx"}}, 0)
s := store.NewPebbleHypergraphStore(&config.DBConfig{InMemoryDONOTUSE: true}, db, l, verEncr, bls48581.NewKZGInclusionProver(l))
// Create initial tree
tree := &crypto.LazyVectorCommitmentTree{
InclusionProver: bls48581.NewKZGInclusionProver(l),
Store: s,
SetType: "vertex",
PhaseType: "pathidx",
ShardKey: crypto.ShardKey{},
}
// Structure designed to create a specific path index scenario:
//
// Root Branch (FullPrefix=[])
// / \
// Loner(0x10) SubBranch(0x20) (FullPrefix=[2,0])
// / \
// Key1 Key2
//
// After deleting Loner, SubBranch gets promoted:
// - Its Prefix becomes merged with root's prefix
// - But FullPrefix stays [2,0] (the bug)
// - Path index is stored at pathFn([2,0]) not pathFn([])
//
// If we then close the tree and try to load by path [], we won't find it
// (or we'll find at wrong location)
// Keys designed to create the structure above
// Loner: starts with 0x10 (nibbles: 1, 0)
lonerKey := make([]byte, 64)
lonerKey[0] = 0x10
rand.Read(lonerKey[1:])
// SubBranch keys: start with 0x20 (nibbles: 2, 0)
// Key1 and Key2 diverge at byte 10
key1 := make([]byte, 64)
key1[0] = 0x20
for i := 1; i < 10; i++ {
key1[i] = 0xAA // Common prefix
}
key1[10] = 0x11 // Divergence point
rand.Read(key1[11:])
key2 := make([]byte, 64)
copy(key2, key1[:10])
key2[10] = 0xFF // Different divergence
rand.Read(key2[11:])
// Insert all keys
if err := tree.Insert(nil, lonerKey, lonerKey, nil, big.NewInt(1)); err != nil {
t.Fatalf("Failed to insert loner: %v", err)
}
if err := tree.Insert(nil, key1, key1, nil, big.NewInt(1)); err != nil {
t.Fatalf("Failed to insert key1: %v", err)
}
if err := tree.Insert(nil, key2, key2, nil, big.NewInt(1)); err != nil {
t.Fatalf("Failed to insert key2: %v", err)
}
// Commit to persist
_ = tree.Commit(nil, false)
// Log the structure before deletion
if branch, ok := tree.Root.(*crypto.LazyVectorCommitmentBranchNode); ok {
t.Logf("Root before delete: Prefix=%v, FullPrefix=%v", branch.Prefix, branch.FullPrefix)
for i, child := range branch.Children {
if child != nil {
switch c := child.(type) {
case *crypto.LazyVectorCommitmentBranchNode:
t.Logf(" Child[%d] Branch: Prefix=%v, FullPrefix=%v", i, c.Prefix, c.FullPrefix)
case *crypto.LazyVectorCommitmentLeafNode:
t.Logf(" Child[%d] Leaf: Key=%x...", i, c.Key[:4])
}
}
}
}
// Delete loner - triggers promotion of SubBranch to root
if err := tree.Delete(nil, lonerKey); err != nil {
t.Fatalf("Failed to delete loner: %v", err)
}
// Commit after delete to persist changes
rootAfterDelete := tree.Commit(nil, false)
t.Logf("Root after delete: %x", rootAfterDelete[:16])
// Log the structure after deletion
if branch, ok := tree.Root.(*crypto.LazyVectorCommitmentBranchNode); ok {
t.Logf("Root after delete: Prefix=%v, FullPrefix=%v", branch.Prefix, branch.FullPrefix)
// THE BUG: If FullPrefix is not updated, it still shows the old path [2,0] or similar
// but the node is now at the root (should be [])
}
// Clear the in-memory tree completely
tree.Root = nil
tree = nil
// Create a completely fresh tree instance (simulating restart)
tree2 := &crypto.LazyVectorCommitmentTree{
InclusionProver: bls48581.NewKZGInclusionProver(l),
Store: s,
SetType: "vertex",
PhaseType: "pathidx",
ShardKey: crypto.ShardKey{},
}
// Try to load root by path [] - this uses the path index
t.Log("Attempting to load root from storage via path lookup...")
rootNode, err := s.GetNodeByPath("vertex", "pathidx", crypto.ShardKey{}, []int{})
if err != nil {
t.Logf("ERROR: Failed to load root from storage: %v", err)
t.Log("This confirms the FullPrefix bug - path index is at wrong location!")
// The bug is confirmed if we can't load the root
t.FailNow()
}
tree2.Root = rootNode
// If we got here, check if the loaded root has correct FullPrefix
if branch, ok := rootNode.(*crypto.LazyVectorCommitmentBranchNode); ok {
t.Logf("Loaded root: Prefix=%v, FullPrefix=%v", branch.Prefix, branch.FullPrefix)
if len(branch.FullPrefix) != 0 {
t.Logf("BUG DETECTED: Root should have FullPrefix=[] but has %v", branch.FullPrefix)
// Don't fail here yet, let's see if it affects functionality
}
}
// Try to get the keys from the fresh tree
val1, err := tree2.Get(key1)
if err != nil {
t.Fatalf("Failed to get key1 from fresh tree: %v", err)
}
if !bytes.Equal(val1, key1) {
t.Fatalf("Key1 value corrupted")
}
val2, err := tree2.Get(key2)
if err != nil {
t.Fatalf("Failed to get key2 from fresh tree: %v", err)
}
if !bytes.Equal(val2, key2) {
t.Fatalf("Key2 value corrupted")
}
// Verify commitment matches
freshRoot := tree2.Commit(nil, false)
t.Logf("Fresh tree root: %x", freshRoot[:16])
if !bytes.Equal(rootAfterDelete, freshRoot) {
t.Fatalf("Root commitment mismatch!\n"+
"After delete: %x\n"+
"Fresh load: %x", rootAfterDelete, freshRoot)
}
t.Log("Test passed - branch promotion path index is working correctly")
}
func TestNonLazyProveMultipleVerify(t *testing.T) {
l, _ := zap.NewProduction()
prover := bls48581.NewKZGInclusionProver(l)
tree := &crypto.VectorCommitmentTree{}
// Generate 1000 random 64-byte keys and corresponding values
numKeys := 1000
keys := make([][]byte, numKeys)
values := make([][]byte, numKeys)
for i := 0; i < numKeys; i++ {
// Generate random 64-byte key
key := make([]byte, 64)
rand.Read(key)
keys[i] = key
// Generate random value
val := make([]byte, 32)
rand.Read(val)
values[i] = val
// Insert into tree
err := tree.Insert(key, val, nil, big.NewInt(1))
if err != nil {
t.Errorf("Failed to insert item %d: %v", i, err)
}
}
// Get original size metadata
originalSize := tree.GetSize()
expectedSize := big.NewInt(int64(numKeys))
if originalSize.Cmp(expectedSize) != 0 {
t.Errorf("Expected tree size to be %s, got %s", expectedSize.String(), originalSize.String())
}
// Commit the tree and get root commitment
originalRoot := tree.Commit(prover, false)
// Choose a few random keys to test with
testKeys := [][]byte{}
testValues := [][]byte{}
for _ = range 3 {
testIndex := mrand.Intn(numKeys)
testKey := keys[testIndex]
testValue := values[testIndex]
testKeys = append(testKeys, testKey)
testValues = append(testValues, testValue)
}
// Generate proof for the selected leaf
originalProof := tree.ProveMultiple(prover, testKeys)
// Validate the proof
if !crypto.VerifyTreeTraversalProof(prover, originalRoot, originalProof) {
t.Errorf("Failed to verify original proof")
}
// Re-add the exact same leaf
err := tree.Insert(testKeys[0], testValues[0], nil, big.NewInt(1))
if err != nil {
t.Errorf("Failed to re-insert the same leaf: %v", err)
}
// Check size hasn't changed
newSize := tree.GetSize()
if newSize.Cmp(originalSize) != 0 {
t.Errorf("Expected size to remain %s after re-adding same leaf, got %s", originalSize.String(), newSize.String())
}
// Commit again
newRoot := tree.Commit(prover, false)
// Check commitment hasn't changed
if !bytes.Equal(originalRoot, newRoot) {
t.Errorf("Expected commitment to remain the same after re-adding the same leaf")
}
// Verify the original proof still works
if !crypto.VerifyTreeTraversalProof(prover, newRoot, originalProof) {
t.Errorf("Original proof no longer valid after re-adding the same leaf")
}
}