ceremonyclient/bedlam/compiler/circuits/circ_divider.go
Cassandra Heart dbd95bd9e9
v2.1.0 (#439)
* v2.1.0 [omit consensus and adjacent] - this commit will be amended with the full release after the file copy is complete

* 2.1.0 main node rollup
2025-09-30 02:48:15 -05:00

310 lines
6.2 KiB
Go

//
// Copyright (c) 2019-2024 Markku Rossi
//
// All rights reserved.
//
package circuits
// NewUDividerLong creates an unsigned integer division circuit
// computing r=a/b, q=a%b. This function uses Long Division algorithm.
func NewUDividerLong(cc *Compiler, a, b, q, rret []*Wire) error {
a, b = cc.ZeroPad(a, b)
r := make([]*Wire, len(a))
for i := 0; i < len(r); i++ {
r[i] = cc.ZeroWire()
}
for i := len(a) - 1; i >= 0; i-- {
// r << 1
for j := len(r) - 1; j > 0; j-- {
r[j] = r[j-1]
}
r[0] = a[i]
// r-d, overlow: r < d
diff := make([]*Wire, len(r)+1)
for j := 0; j < len(diff); j++ {
diff[j] = cc.Calloc.Wire()
}
err := NewSubtractor(cc, r, b, diff)
if err != nil {
return err
}
if i < len(q) {
err = NewMUX(cc, diff[len(diff)-1:], []*Wire{cc.ZeroWire()},
[]*Wire{cc.OneWire()}, q[i:i+1])
if err != nil {
return err
}
}
nr := make([]*Wire, len(r))
for j := 0; j < len(nr); j++ {
if i == 0 && j < len(rret) {
nr[j] = rret[j]
} else {
nr[j] = cc.Calloc.Wire()
}
}
err = NewMUX(cc, diff[len(diff)-1:], r, diff[:len(diff)-1], nr)
if err != nil {
return err
}
r = nr
}
return nil
}
// NewUDividerRestoring creates an unsigned integer division circuit
// computing r=a/b, q=a%b. This function uses Restoring Division
// algorithm.
func NewUDividerRestoring(cc *Compiler, a, b, q, rret []*Wire) error {
a, b = cc.ZeroPad(a, b)
r := make([]*Wire, len(a)*2)
for i := 0; i < len(r); i++ {
if i < len(a) {
r[i] = a[i]
} else {
r[i] = cc.ZeroWire()
}
}
d := make([]*Wire, len(b)*2)
for i := 0; i < len(d); i++ {
if i < len(b) {
d[i] = cc.ZeroWire()
} else {
d[i] = b[i-len(b)]
}
}
for i := len(a) - 1; i >= 0; i-- {
// r << 1
for j := len(r) - 1; j > 0; j-- {
r[j] = r[j-1]
}
r[0] = cc.ZeroWire()
// r-d, overlow: r < d
diff := make([]*Wire, len(r)+1)
for j := 0; j < len(diff); j++ {
diff[j] = cc.Calloc.Wire()
}
err := NewSubtractor(cc, r, d, diff)
if err != nil {
return err
}
if i < len(q) {
err = NewMUX(cc, diff[len(diff)-1:], []*Wire{cc.ZeroWire()},
[]*Wire{cc.OneWire()}, q[i:i+1])
if err != nil {
return err
}
}
nr := make([]*Wire, len(r))
for j := 0; j < len(nr); j++ {
if i == 0 && j >= len(a) && j-len(a) < len(rret) {
nr[j] = rret[j-len(a)]
} else {
nr[j] = cc.Calloc.Wire()
}
}
err = NewMUX(cc, diff[len(diff)-1:], r, diff[:len(diff)-1], nr)
if err != nil {
return err
}
r = nr
}
return nil
}
// NewUDividerArray creates an unsigned integer division circuit
// computing r=a/b, q=a%b. This function uses Array Divider algorithm.
func NewUDividerArray(cc *Compiler, a, b, q, r []*Wire) error {
a, b = cc.ZeroPad(a, b)
rIn := make([]*Wire, len(b)+1)
rOut := make([]*Wire, len(b)+1)
// Init bINV.
bINV := make([]*Wire, len(b))
for i := 0; i < len(b); i++ {
bINV[i] = cc.Calloc.Wire()
cc.INV(b[i], bINV[i])
}
// Init for the first row.
for i := 0; i < len(b); i++ {
rOut[i] = cc.ZeroWire()
}
// Generate matrix.
for y := 0; y < len(a); y++ {
// Init rIn.
rIn[0] = a[len(a)-1-y]
copy(rIn[1:], rOut)
// Adders from b{0} to b{n-1}, 0
cIn := cc.OneWire()
for x := 0; x < len(b)+1; x++ {
var bw *Wire
if x < len(b) {
bw = bINV[x]
} else {
bw = cc.OneWire() // INV(0)
}
co := cc.Calloc.Wire()
ro := cc.Calloc.Wire()
NewFullAdder(cc, rIn[x], bw, cIn, ro, co)
rOut[x] = ro
cIn = co
}
// Quotient y.
if len(a)-1-y < len(q) {
w := cc.Calloc.Wire()
cc.INV(cIn, w)
cc.INV(w, q[len(a)-1-y])
}
// MUXes from high to low bit.
for x := len(b); x >= 0; x-- {
var ro *Wire
if y+1 >= len(a) && x < len(r) {
ro = r[x]
} else {
ro = cc.Calloc.Wire()
}
err := NewMUX(cc, []*Wire{cIn}, rOut[x:x+1], rIn[x:x+1],
[]*Wire{ro})
if err != nil {
return err
}
rOut[x] = ro
}
}
// Set extra quotient bits to zero.
for y := len(a); y < len(q); y++ {
q[y] = cc.ZeroWire()
}
// Set extra remainder bits to zero.
for x := len(b); x < len(r); x++ {
r[x] = cc.ZeroWire()
}
return nil
}
// NewUDivider creates an unsigned integer division circuit computing
// r=a/b, q=a%b.
func NewUDivider(cc *Compiler, a, b, q, r []*Wire) error {
return NewUDividerLong(cc, a, b, q, r)
}
// NewIDivider creates a signed integer division circuit computing
// r=a/b, q=a%b. The function converts negative a and b to positive
// values before doing the divmod with NewUDivider. If a or b was
// negative, the funtion converts the result quotient to negative
// value.
func NewIDivider(cc *Compiler, a, b, q, r []*Wire) error {
a, b = cc.ZeroPad(a, b)
zero := []*Wire{cc.ZeroWire()}
neg0 := cc.ZeroWire()
// If a is negative, set neg=!neg, a=-a.
neg1 := cc.Calloc.Wire()
cc.INV(neg0, neg1)
a1 := make([]*Wire, len(a))
for i := 0; i < len(a1); i++ {
a1[i] = cc.Calloc.Wire()
}
err := NewSubtractor(cc, zero, a, a1)
if err != nil {
return err
}
neg2 := cc.Calloc.Wire()
err = NewMUX(cc, a[len(a)-1:], []*Wire{neg1}, []*Wire{neg0}, []*Wire{neg2})
if err != nil {
return err
}
a2 := make([]*Wire, len(a))
for i := 0; i < len(a2); i++ {
a2[i] = cc.Calloc.Wire()
}
err = NewMUX(cc, a[len(a)-1:], a1, a, a2)
if err != nil {
return err
}
// If b is negative, set neg=!neg, b=-b.
neg3 := cc.Calloc.Wire()
cc.INV(neg2, neg3)
b1 := make([]*Wire, len(b))
for i := 0; i < len(b1); i++ {
b1[i] = cc.Calloc.Wire()
}
err = NewSubtractor(cc, zero, b, b1)
if err != nil {
return err
}
neg4 := cc.Calloc.Wire()
err = NewMUX(cc, b[len(b)-1:], []*Wire{neg3}, []*Wire{neg2}, []*Wire{neg4})
if err != nil {
return err
}
b2 := make([]*Wire, len(b))
for i := 0; i < len(a2); i++ {
b2[i] = cc.Calloc.Wire()
}
err = NewMUX(cc, b[len(b)-1:], b1, b, b2)
if err != nil {
return err
}
if len(q) == 0 {
// Modulo operation.
return NewUDivider(cc, a2, b2, q, r)
}
// If neg is set, set q=-q
q0 := make([]*Wire, len(q))
for i := 0; i < len(q0); i++ {
q0[i] = cc.Calloc.Wire()
}
err = NewUDivider(cc, a2, b2, q0, r)
if err != nil {
return err
}
q1 := make([]*Wire, len(q))
for i := 0; i < len(q1); i++ {
q1[i] = cc.Calloc.Wire()
}
err = NewSubtractor(cc, zero, q0, q1)
if err != nil {
return err
}
return NewMUX(cc, []*Wire{neg4}, q1, q0, q)
}