MoneyPrinterTurbo/app/services/llm.py
2024-04-09 19:50:39 +08:00

259 lines
9.6 KiB
Python

import logging
import re
import json
from typing import List
from loguru import logger
from openai import OpenAI
from openai import AzureOpenAI
from app.config import config
def _generate_response(prompt: str) -> str:
content = ""
llm_provider = config.app.get("llm_provider", "openai")
logger.info(f"llm provider: {llm_provider}")
if llm_provider == "g4f":
model_name = config.app.get("g4f_model_name", "")
if not model_name:
model_name = "gpt-3.5-turbo-16k-0613"
import g4f
content = g4f.ChatCompletion.create(
model=model_name,
messages=[{"role": "user", "content": prompt}],
)
else:
api_version = "" # for azure
if llm_provider == "moonshot":
api_key = config.app.get("moonshot_api_key")
model_name = config.app.get("moonshot_model_name")
base_url = "https://api.moonshot.cn/v1"
elif llm_provider == "ollama":
# api_key = config.app.get("openai_api_key")
api_key = "ollama" # any string works but you are required to have one
model_name = config.app.get("ollama_model_name")
base_url = config.app.get("ollama_base_url", "")
if not base_url:
base_url = "http://localhost:11434/v1"
elif llm_provider == "openai":
api_key = config.app.get("openai_api_key")
model_name = config.app.get("openai_model_name")
base_url = config.app.get("openai_base_url", "")
if not base_url:
base_url = "https://api.openai.com/v1"
elif llm_provider == "oneapi":
api_key = config.app.get("oneapi_api_key")
model_name = config.app.get("oneapi_model_name")
base_url = config.app.get("oneapi_base_url", "")
elif llm_provider == "azure":
api_key = config.app.get("azure_api_key")
model_name = config.app.get("azure_model_name")
base_url = config.app.get("azure_base_url", "")
api_version = config.app.get("azure_api_version", "2024-02-15-preview")
elif llm_provider == "gemini":
api_key = config.app.get("gemini_api_key")
model_name = config.app.get("gemini_model_name")
base_url = "***"
elif llm_provider == "qwen":
api_key = config.app.get("qwen_api_key")
model_name = config.app.get("qwen_model_name")
base_url = "***"
else:
raise ValueError("llm_provider is not set, please set it in the config.toml file.")
if not api_key:
raise ValueError(f"{llm_provider}: api_key is not set, please set it in the config.toml file.")
if not model_name:
raise ValueError(f"{llm_provider}: model_name is not set, please set it in the config.toml file.")
if not base_url:
raise ValueError(f"{llm_provider}: base_url is not set, please set it in the config.toml file.")
if llm_provider == "qwen":
import dashscope
dashscope.api_key = api_key
response = dashscope.Generation.call(
model=model_name,
messages=[{"role": "user", "content": prompt}]
)
content = response["output"]["text"]
return content.replace("\n", "")
if llm_provider == "gemini":
import google.generativeai as genai
genai.configure(api_key=api_key)
generation_config = {
"temperature": 0.5,
"top_p": 1,
"top_k": 1,
"max_output_tokens": 2048,
}
safety_settings = [
{
"category": "HARM_CATEGORY_HARASSMENT",
"threshold": "BLOCK_ONLY_HIGH"
},
{
"category": "HARM_CATEGORY_HATE_SPEECH",
"threshold": "BLOCK_ONLY_HIGH"
},
{
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
"threshold": "BLOCK_ONLY_HIGH"
},
{
"category": "HARM_CATEGORY_DANGEROUS_CONTENT",
"threshold": "BLOCK_ONLY_HIGH"
},
]
model = genai.GenerativeModel(model_name=model_name,
generation_config=generation_config,
safety_settings=safety_settings)
convo = model.start_chat(history=[])
convo.send_message(prompt)
return convo.last.text
if llm_provider == "azure":
client = AzureOpenAI(
api_key=api_key,
api_version=api_version,
azure_endpoint=base_url,
)
else:
client = OpenAI(
api_key=api_key,
base_url=base_url,
)
response = client.chat.completions.create(
model=model_name,
messages=[{"role": "user", "content": prompt}]
)
if response:
content = response.choices[0].message.content
return content.replace("\n", "")
def generate_script(video_subject: str, language: str = "", paragraph_number: int = 1) -> str:
prompt = f"""
# Role: Video Script Generator
## Goals:
Generate a script for a video, depending on the subject of the video.
## Constrains:
1. the script is to be returned as a string with the specified number of paragraphs.
2. do not under any circumstance reference this prompt in your response.
3. get straight to the point, don't start with unnecessary things like, "welcome to this video".
4. you must not include any type of markdown or formatting in the script, never use a title.
5. only return the raw content of the script.
6. do not include "voiceover", "narrator" or similar indicators of what should be spoken at the beginning of each paragraph or line.
7. you must not mention the prompt, or anything about the script itself. also, never talk about the amount of paragraphs or lines. just write the script.
8. respond in the same language as the video subject.
# Initialization:
- video subject: {video_subject}
- number of paragraphs: {paragraph_number}
""".strip()
if language:
prompt += f"\n- language: {language}"
final_script = ""
logger.info(f"subject: {video_subject}")
logger.debug(f"prompt: \n{prompt}")
response = _generate_response(prompt=prompt)
# Return the generated script
if response:
# Clean the script
# Remove asterisks, hashes
response = response.replace("*", "")
response = response.replace("#", "")
# Remove markdown syntax
response = re.sub(r"\[.*\]", "", response)
response = re.sub(r"\(.*\)", "", response)
# Split the script into paragraphs
paragraphs = response.split("\n\n")
# Select the specified number of paragraphs
selected_paragraphs = paragraphs[:paragraph_number]
# Join the selected paragraphs into a single string
final_script = "\n\n".join(selected_paragraphs)
# Print to console the number of paragraphs used
# logger.info(f"number of paragraphs used: {len(selected_paragraphs)}")
else:
logging.error("gpt returned an empty response")
logger.success(f"completed: \n{final_script}")
return final_script
def generate_terms(video_subject: str, video_script: str, amount: int = 5) -> List[str]:
prompt = f"""
# Role: Video Search Terms Generator
## Goals:
Generate {amount} search terms for stock videos, depending on the subject of a video.
## Constrains:
1. the search terms are to be returned as a json-array of strings.
2. each search term should consist of 1-3 words, always add the main subject of the video.
3. you must only return the json-array of strings. you must not return anything else. you must not return the script.
4. the search terms must be related to the subject of the video.
5. reply with english search terms only.
## Output Example:
["search term 1", "search term 2", "search term 3","search term 4","search term 5"]
## Context:
### Video Subject
{video_subject}
### Video Script
{video_script}
Please note that you must use English for generating video search terms; Chinese is not accepted.
""".strip()
logger.info(f"subject: {video_subject}")
logger.debug(f"prompt: \n{prompt}")
response = _generate_response(prompt)
search_terms = []
try:
search_terms = json.loads(response)
if not isinstance(search_terms, list) or not all(isinstance(term, str) for term in search_terms):
raise ValueError("response is not a list of strings.")
except (json.JSONDecodeError, ValueError):
# logger.warning(f"gpt returned an unformatted response. attempting to clean...")
# Attempt to extract list-like string and convert to list
match = re.search(r'\["(?:[^"\\]|\\.)*"(?:,\s*"[^"\\]*")*\]', response)
if match:
try:
search_terms = json.loads(match.group())
except json.JSONDecodeError:
logger.error(f"could not parse response: {response}")
return []
logger.success(f"completed: \n{search_terms}")
return search_terms
if __name__ == "__main__":
video_subject = "生命的意义是什么"
script = generate_script(video_subject=video_subject, language="zh-CN", paragraph_number=1)
# print("######################")
# print(script)
# search_terms = generate_terms(video_subject=video_subject, video_script=script, amount=5)
# print("######################")
# print(search_terms)