Merge branch 'main' of github.com:elf-mouse/MoneyPrinterTurbo

This commit is contained in:
elf-mouse 2024-04-12 16:50:32 +08:00
commit 1dbfcfadab
2 changed files with 42 additions and 9 deletions

View File

@ -242,8 +242,8 @@ python main.py
当前支持2种字幕生成方式
- edge: 生成速度快,性能更好,对电脑配置没有要求,但是质量可能不稳定
- whisper: 生成速度慢,性能较差,对电脑配置有一定要求,但是质量更可靠。
- **edge**: 生成`速度快`,性能更好,对电脑配置没有要求,但是质量可能不稳定
- **whisper**: 生成`速度慢`,性能较差,对电脑配置有一定要求,但是`质量更可靠`
可以修改 `config.toml` 配置文件中的 `subtitle_provider` 进行切换
@ -253,6 +253,25 @@ python main.py
1. whisper 模式下需要到 HuggingFace 下载一个模型文件,大约 3GB 左右,请确保网络通畅
2. 如果留空,表示不生成字幕。
> 由于国内无法访问 HuggingFace可以使用以下方法下载 `whisper-large-v3` 的模型文件
下载地址:
- 百度网盘: https://pan.baidu.com/s/11h3Q6tsDtjQKTjUu3sc5cA?pwd=xjs9
- 夸克网盘https://pan.quark.cn/s/3ee3d991d64b
模型下载后解压,整个目录放到 `.\MoneyPrinterTurbo\models` 里面,
最终的文件路径应该是这样: `.\MoneyPrinterTurbo\models\whisper-large-v3`
```
MoneyPrinterTurbo
├─models
│ └─whisper-large-v3
│ config.json
│ model.bin
│ preprocessor_config.json
│ tokenizer.json
│ vocabulary.json
```
## 背景音乐 🎵
用于视频的背景音乐,位于项目的 `resource/songs` 目录下。

View File

@ -76,13 +76,27 @@ def _generate_response(prompt: str) -> str:
if llm_provider == "qwen":
import dashscope
from dashscope.api_entities.dashscope_response import GenerationResponse
dashscope.api_key = api_key
response = dashscope.Generation.call(
model=model_name,
messages=[{"role": "user", "content": prompt}]
)
content = response["output"]["text"]
return content.replace("\n", "")
if response:
if isinstance(response, GenerationResponse):
status_code = response.status_code
if status_code != 200:
raise Exception(
f"[{llm_provider}] returned an error response: \"{response}\"")
content = response["output"]["text"]
return content.replace("\n", "")
else:
raise Exception(
f"[{llm_provider}] returned an invalid response: \"{response}\"")
else:
raise Exception(
f"[{llm_provider}] returned an empty response")
if llm_provider == "gemini":
import google.generativeai as genai
@ -130,13 +144,13 @@ def _generate_response(prompt: str) -> str:
if llm_provider == "cloudflare":
import requests
response = requests.post(
f"https://api.cloudflare.com/client/v4/accounts/{account_id}/ai/run/{model_name}",
f"https://api.cloudflare.com/client/v4/accounts/{account_id}/ai/run/{model_name}",
headers={"Authorization": f"Bearer {api_key}"},
json={
"messages": [
{"role": "system", "content": "You are a friendly assistant"},
{"role": "user", "content": prompt}
]
"messages": [
{"role": "system", "content": "You are a friendly assistant"},
{"role": "user", "content": prompt}
]
}
)
result = response.json()